BACKGROUND: We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy.METHODS: We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard.RESULTS: At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74-0.81), 0.82 specificity (95% CI 0.78-0.85), and 0.89 area under the curve (AUC) (95% CI 0.86-0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% CI 0.72-0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73-0.87), and 0.81 AUC (95% CI 0.73-0.87). Radiologists' reading obtained 0.63 sensitivity (95% CI 0.52-0.74) and 0.78 specificity (95% CI 0.61-0.90) in Centre 1 and 0.64 sensitivity (95% CI 0.52-0.74) and 0.86 specificity (95% CI 0.71-0.95) in Centre 2.CONCLUSIONS: This preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.

Machine learning applied on chest x-ray can aid in the diagnosis of COVID-19: a first experience from Lombardy, Italy

Christian Salvatore
;
2021

Abstract

BACKGROUND: We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy.METHODS: We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard.RESULTS: At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74-0.81), 0.82 specificity (95% CI 0.78-0.85), and 0.89 area under the curve (AUC) (95% CI 0.86-0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% CI 0.72-0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73-0.87), and 0.81 AUC (95% CI 0.73-0.87). Radiologists' reading obtained 0.63 sensitivity (95% CI 0.52-0.74) and 0.78 specificity (95% CI 0.61-0.90) in Centre 1 and 0.64 sensitivity (95% CI 0.52-0.74) and 0.86 specificity (95% CI 0.71-0.95) in Centre 2.CONCLUSIONS: This preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.
Artificial intelligence
COVID-19
Neural networks (computer)
Sensitivity and specificity
X-rays
Aged
Female
Humans
Italy
Lung
Male
Middle Aged
Radiographic Image Interpretation, Computer-Assisted
Radiography, Thoracic
Reproducibility of Results
Retrospective Studies
SARS-CoV-2
COVID-19
Machine Learning
X-Rays
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12076/9437
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact