Salt marshes are important coastal areas that consist of a vegetated intertidal marsh platform and a drainage network of tidal channels. How salt marshes and their drainage networks develop is not fully understood, but it has been shown that the biogeomorphic interactions and feedbacks between vegetation development and channel formation play an important role. We examined the relationships among tidal channel sinuosity, marsh elevation and roughness, vegetation type (pioneer, Elymus athericus or Phragmites australis) and patch size at different spatial scales using a high‐resolution vegetation map (derived from aerial photography) and lower‐resolution satellite imagery processed with linear spectral mixture analysis (LSMA). The patch size distribution in all vegetation types corresponded to a power law, suggesting the presence of self‐organizational processes. While small vegetation patches are more dominant in pioneer vegetation, they were present in all vegetation types. The largest patch size is restricted to E. athericus. We observed an inverse logarithmic relationship between channel sinuosity and vegetation patch size in all vegetation types. The fact that this relationship is observed in both pioneer and later successional stages suggests that after the establishment of a drainage network in the dynamic pioneer stages of salt marsh development, the later stages of salt marsh succession largely inherit the meandering pattern of the early successional stages. Our study confirms recent evidence that no significant changes in the specific features of tidal channel networks (e.g., channel width, drainage density and efficiency) take place during the later stages of salt marsh development.

Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform

Andrea Taramelli
Methodology
;
2018

Abstract

Salt marshes are important coastal areas that consist of a vegetated intertidal marsh platform and a drainage network of tidal channels. How salt marshes and their drainage networks develop is not fully understood, but it has been shown that the biogeomorphic interactions and feedbacks between vegetation development and channel formation play an important role. We examined the relationships among tidal channel sinuosity, marsh elevation and roughness, vegetation type (pioneer, Elymus athericus or Phragmites australis) and patch size at different spatial scales using a high‐resolution vegetation map (derived from aerial photography) and lower‐resolution satellite imagery processed with linear spectral mixture analysis (LSMA). The patch size distribution in all vegetation types corresponded to a power law, suggesting the presence of self‐organizational processes. While small vegetation patches are more dominant in pioneer vegetation, they were present in all vegetation types. The largest patch size is restricted to E. athericus. We observed an inverse logarithmic relationship between channel sinuosity and vegetation patch size in all vegetation types. The fact that this relationship is observed in both pioneer and later successional stages suggests that after the establishment of a drainage network in the dynamic pioneer stages of salt marsh development, the later stages of salt marsh succession largely inherit the meandering pattern of the early successional stages. Our study confirms recent evidence that no significant changes in the specific features of tidal channel networks (e.g., channel width, drainage density and efficiency) take place during the later stages of salt marsh development.
Vegetation patch size, SMA, biogeomorphic processes, Synuosity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12076/4522
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact