Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, that can impede their detection at the softest X-ray energies. Exploiting the good coverage obtained with sensitive XMM-Newton observations, we have undertaken a search for highly absorbed X-ray sources in the Small Magellanic Cloud (SMC), which is known to contain a large number of HMXRBs. After a systematic analysis of 62 XMM-Newton SMC observations, we obtained a sample of 30 sources with evidence of an equivalent hydrogen column density larger than 3 × 1023 cm-2. Five of these sources are clearly identified as HMXRBs, four being previously known (including three X-ray pulsars) and one, XMMU J005605.8-720012, being reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many have possible NIR counterparts consistent with highly reddened early-type stars in the SMC. While their number is broadly consistent with the expected population of background highly absorbed active galactic nuclei, a few of them could be HMXRBs in which an early-type companion is severely reddened by local material.

Highly absorbed X-ray binaries in the Small Magellanic Cloud

Novara G.;Tiengo A;
2011

Abstract

Many of the high mass X-ray binaries (HMXRBs) discovered in recent years in our Galaxy are characterized by a high absorption, most likely intrinsic to the system, that can impede their detection at the softest X-ray energies. Exploiting the good coverage obtained with sensitive XMM-Newton observations, we have undertaken a search for highly absorbed X-ray sources in the Small Magellanic Cloud (SMC), which is known to contain a large number of HMXRBs. After a systematic analysis of 62 XMM-Newton SMC observations, we obtained a sample of 30 sources with evidence of an equivalent hydrogen column density larger than 3 × 1023 cm-2. Five of these sources are clearly identified as HMXRBs, four being previously known (including three X-ray pulsars) and one, XMMU J005605.8-720012, being reported here for the first time. For the latter, we present optical spectroscopy confirming the association with a Be star in the SMC. The other sources in our sample have optical counterparts fainter than magnitude ~16 in the V band, and many have possible NIR counterparts consistent with highly reddened early-type stars in the SMC. While their number is broadly consistent with the expected population of background highly absorbed active galactic nuclei, a few of them could be HMXRBs in which an early-type companion is severely reddened by local material.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12076/417
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact