A shaking table test on a two-storey full scale unreinforced masonry (URM) building was performed at the EUCENTRE laboratory within a comprehensive research programme on the seismic vulnerability of the existing Dutch URM structures. The building specimen was meant to represent the end-unit of a terraced house, built with cavity walls and without any particular seismic design or detailing. Cavity walls are usually composed of an inner loadbearing leaf and an outer leaf having aesthetic and weather-protection functions. In the tested specimen, the loadbearing masonry was composed of calcium silicate bricks, sustaining two reinforced concrete floors. A pitched timber roof was supported by two gable walls. The veneer was made of clay bricks connected to the inner masonry by means of metallic ties, as seen in common construction practice. An incremental dynamic test was carried out up to the near-collapse limit state of the specimen. The input motions were selected to be consistent with the characteristics of induced seismicity ground motions. The article describes the characteristics of the building and presents the results obtained during the material characterization and the shaking table tests, illustrating the response of the structure, the damage mechanism and its evolution during the experimental phases. All the processed data are freely available upon request (see http://www.eucentre.it/nam-project).

Shaking table test on a full scale URM cavity wall building

GRAZIOTTI, FRANCESCO;KALLIORAS, STYLIANOS;MAGENES, GUIDO
2017-01-01

Abstract

A shaking table test on a two-storey full scale unreinforced masonry (URM) building was performed at the EUCENTRE laboratory within a comprehensive research programme on the seismic vulnerability of the existing Dutch URM structures. The building specimen was meant to represent the end-unit of a terraced house, built with cavity walls and without any particular seismic design or detailing. Cavity walls are usually composed of an inner loadbearing leaf and an outer leaf having aesthetic and weather-protection functions. In the tested specimen, the loadbearing masonry was composed of calcium silicate bricks, sustaining two reinforced concrete floors. A pitched timber roof was supported by two gable walls. The veneer was made of clay bricks connected to the inner masonry by means of metallic ties, as seen in common construction practice. An incremental dynamic test was carried out up to the near-collapse limit state of the specimen. The input motions were selected to be consistent with the characteristics of induced seismicity ground motions. The article describes the characteristics of the building and presents the results obtained during the material characterization and the shaking table tests, illustrating the response of the structure, the damage mechanism and its evolution during the experimental phases. All the processed data are freely available upon request (see http://www.eucentre.it/nam-project).
2017
Calcium silicate bricks; Full-scale building; Induced seismicity; Shaking table test; URM cavity walls; Civil and Structural Engineering; Building and Construction; Geotechnical Engineering and Engineering Geology; Geophysics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12076/4091
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? ND
social impact