Circulating platelets and platelet-derived microparticles are regulators of cancer metastasis. In this study, we show that breast cancer cells induce platelet aggregation and lead to the release of platelet-derived microparticles. Although able to cause comparable aggregation, the highly aggressive MDA-MB-231 cells were more potent than the poorly aggressive MCF7 cells in inducing platelet-derived microparticles release, which was comparable to that promoted by thrombin. MDA-MB-231 cells were able to bind and internalize both MCF7- and MDA-MB-231-induced platelet-derived microparticles with comparable efficiency. By contrast, MCF7 cells did not interact with either type of platelet-derived microparticles. Upon internalization, only plateletderived microparticles released by platelet stimulation with MDA-MB-231 cells, but not those released upon stimulation with MCF7 cells, caused activation of MDA-MB-231 cells and promoted the phosphorylation of selected signaling proteins, including p38MAPK and myosin light chain. Accordingly, MDA-MB-231-induced, but not MCF7- induced, platelet-derived microparticles dose-dependently stimulated migration and invasion of targeted MDA-MB-231 cells. These results identify a novel paracrine positive feedback mechanism initiated by aggressive breast cancer cell types to potentiate their invasive phenotype through the release of platelet-derived microparticles.

Release of Prometastatic Platelet-Derived Microparticles Induced by Breast Cancer Cells: A Novel Positive Feedback Mechanism for Metastasis

Canino, Jessica;
2017

Abstract

Circulating platelets and platelet-derived microparticles are regulators of cancer metastasis. In this study, we show that breast cancer cells induce platelet aggregation and lead to the release of platelet-derived microparticles. Although able to cause comparable aggregation, the highly aggressive MDA-MB-231 cells were more potent than the poorly aggressive MCF7 cells in inducing platelet-derived microparticles release, which was comparable to that promoted by thrombin. MDA-MB-231 cells were able to bind and internalize both MCF7- and MDA-MB-231-induced platelet-derived microparticles with comparable efficiency. By contrast, MCF7 cells did not interact with either type of platelet-derived microparticles. Upon internalization, only plateletderived microparticles released by platelet stimulation with MDA-MB-231 cells, but not those released upon stimulation with MCF7 cells, caused activation of MDA-MB-231 cells and promoted the phosphorylation of selected signaling proteins, including p38MAPK and myosin light chain. Accordingly, MDA-MB-231-induced, but not MCF7- induced, platelet-derived microparticles dose-dependently stimulated migration and invasion of targeted MDA-MB-231 cells. These results identify a novel paracrine positive feedback mechanism initiated by aggressive breast cancer cell types to potentiate their invasive phenotype through the release of platelet-derived microparticles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12076/4046
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact