: Converting otherwise wasted kinetic energy present in the environment into usable electrical energy to power wireless sensor nodes, is a green strategy to avoid the use of batteries and wires. Most of the energy harvesters presented in the literature are based on the exploitation of a one-degree-of-freedom arrangement, consisting of a tuned spring-mass system oscillating in the main direction of the exciting vibration source. However, if the direction of excitation changes, the efficiency of the harvester decreases. This paper thus proposes the idea of a curved cantilever beam with a two-degree-of-freedom arrangement, where the two bending natural frequencies of the mechanical resonator are designed to be equal. This is thought to lead to a configuration design that can be used in practical circumstances where excitation varies its direction in the plane. This, in turn, may possibly lead to a more effective energy-harvesting solution to power nodes in a wireless sensor network.

Design of a Two-Degree-of-Freedom Mechanical Oscillator for Multidirectional Vibration Energy Harvesting to Power Wireless Sensor Nodes

Hossein Shabanalinezhad
Methodology
;
2024-01-01

Abstract

: Converting otherwise wasted kinetic energy present in the environment into usable electrical energy to power wireless sensor nodes, is a green strategy to avoid the use of batteries and wires. Most of the energy harvesters presented in the literature are based on the exploitation of a one-degree-of-freedom arrangement, consisting of a tuned spring-mass system oscillating in the main direction of the exciting vibration source. However, if the direction of excitation changes, the efficiency of the harvester decreases. This paper thus proposes the idea of a curved cantilever beam with a two-degree-of-freedom arrangement, where the two bending natural frequencies of the mechanical resonator are designed to be equal. This is thought to lead to a configuration design that can be used in practical circumstances where excitation varies its direction in the plane. This, in turn, may possibly lead to a more effective energy-harvesting solution to power nodes in a wireless sensor network.
2024
finite element simulation
piezoelectric energy harvester
spiral beam
wireless sensor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12076/18237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact