Extreme precipitation events lead to dramatic impacts on society and the situation will worsen under climate change. Decision-makers need reliable estimates of future changes as a basis for effective adaptation strategies, but projections at local scale from regional climate models (RCMs) are highly uncertain. Here we exploit the km-scale convection-permitting multi-model (CPM) ensemble, generated within the FPS Convection project, to provide new understanding of the changes in local precipitation extremes and related uncertainties over the greater Alpine region. The CPM ensemble shows a stronger increase in the fractional contribution from extreme events than the driving RCM ensemble during the summer, when convection dominates. We find that the CPM ensemble substantially reduces the model uncertainties and their contribution to the total uncertainties by more than 50%. We conclude that the more realistic representation of local dynamical processes in the CPMs provides more reliable local estimates of change, which are essential for policymakers to plan adaptation measures.

Convection-permitting climate models offer more certain extreme rainfall projections

Fosser, Giorgia
;
Gaetani, Marco;
2024-01-01

Abstract

Extreme precipitation events lead to dramatic impacts on society and the situation will worsen under climate change. Decision-makers need reliable estimates of future changes as a basis for effective adaptation strategies, but projections at local scale from regional climate models (RCMs) are highly uncertain. Here we exploit the km-scale convection-permitting multi-model (CPM) ensemble, generated within the FPS Convection project, to provide new understanding of the changes in local precipitation extremes and related uncertainties over the greater Alpine region. The CPM ensemble shows a stronger increase in the fractional contribution from extreme events than the driving RCM ensemble during the summer, when convection dominates. We find that the CPM ensemble substantially reduces the model uncertainties and their contribution to the total uncertainties by more than 50%. We conclude that the more realistic representation of local dynamical processes in the CPMs provides more reliable local estimates of change, which are essential for policymakers to plan adaptation measures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12076/16477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact