The main purpose of this work is to introduce a novel structuralist position, Weak Structuralism (WS), which is meant to solve the problems of the major structuralist positions in scientific and mathematical structuralism. The appeal to a relation of Mutual Grounding allows to characterize the dependence relation between structures and what can be defined quasi-thin objects. Structuralism is a prominent approach in both the philosophy of science and the philosophy of mathematics. Scientific and mathematical structuralism comprise a variety of approaches. In the present work, I mainly focus on scientific Ontic Structural Realism (OSR) and Stewart Shapiro's mathematical ante rem structuralism. These two views have a number of similarities, concerning the interpretation of structures as ontologically self-subsistent entities which are fundamental and ontologically prior to objects and the metaphysical decomposition of objects in their structural properties. An entirely structural interpretation of objects has raised related criticisms in both views: OSR is subject to ‘the relation without relata’ objection, dealing with the nature of quantum particles in quantum entanglement structures and questioning how we can have a structure without the individuals making up this structure. Mathematical ante rem structuralism faces the identity problem, concerning the individuation of numbers in abstract structures with non-trivial automorphisms, where mathematically distinct object turn out to be structurally indiscernible. My aim is to introduce Weak Structuralism (WS) as a novel structuralist position which is intended to avoid both objections. WS is based on a specific relation of Mutual Grounding which posits objects and structures in a new relationship of fundamentality: objects are grounded for their identity in the structure they belong to and structures are grounded for their existence in the objects constituting them. At the same time, the identity of structures is grounded independently of objects, with reference to higher, more abstract structures. WS fits into the framework of those non-foundationalist approaches, such as Infinitism and Coherentism, which aim at contradicting the standard metaphysical picture suggested by Metaphysical Foundationalism (MF). However, WS offers a further non-foundationalist alternative – characterized by a unique combination of properties – that combines the explanatory advantages of non-foundationalism with some intuitions of MF, thus escaping typical circularity problems affecting other non-foundationalist views.
Il mio principale obiettivo è quello di introdurre una nuova forma di strutturalismo debole (Weak Structuralism, WS) al fine di evitare le difficoltà delle principali posizioni strutturaliste nel dibattito sullo strutturalismo scientifico e matematico. Il riferimento a una relazione di Mutual Grounding permette di descrivere la relazione di dipendenza che si stabilisce tra strutture e oggetti, che in questo contesto vengono definiti quasi-thin objects. Lo strutturalismo rappresenta una posizione sostanziale in filosofia della scienza e filosofia della matematica. Lo strutturalismo scientifico e matematico comprendono una molteplicità di posizioni diverse. In questo lavoro, lo strutturalismo ontico (Ontic Structural Realism, o OSR) e lo strutturalismo matematico ante rem di Stewart Shapiro sono assunti come principale oggetto di indagine. Sebbene le due posizioni facciano riferimento a dibattiti distinti, è possibile ndividuare significativi punti di contatto: l'interpretazione delle strutture come entità autonome fondamentali e prioritarie rispetto agli oggetti e la scomposizione metafisica degli oggetti nelle loro proprietà strutturali. Un'interpretazione degli oggetti in termini unicamente strutturali ha sollevato obiezioni simili in entrambe le posizioni. OSR è soggetto all'obiezione 'delle relazioni senza relata', che riguarda l'individuazione delle particelle quantiche negli stati di entanglement. Si pone infatti la questione di come possano esserci strutture in assenza degli oggetti individuali che le compongono. Lo strutturalismo matematico ante rem va incontro al problema dell'identità, relativo all'individuazione degli oggetti matematici nelle strutture astratte. Questo problema emerge in particolare quando si tratta di individuare 'posti' che appartengono a strutture con automorfismi non-triviali. In questa cornice, il mio scopo è quello di introdurre lo strutturalismo debole (Weak Structuralism, WS) come una nuova forma di strutturalismo che possa aggirare entrambe le obiezioni. WS si basa su una specifica relazione di Mutual Grounding che pone oggetti e strutture in una nuova relazione di fondamentalità: gli oggetti sono fondati nelle strutture per la loro identità e le strutture sono fondate negli oggetti per la loro esistenza. Allo stesso tempo, l'identità delle strutture si fonda indipendentemente rispetto agli oggetti, con riferimento a strutture più astratte, che occupano un livello più alto nella gerarchia delle strutture.
Weak Structuralism, Mutual Grounding and Quasi-Thin Objects: Steps Towards a New Taxonomy of Reality / Bianchi, Silvia. - (2021 Jun 09).
Weak Structuralism, Mutual Grounding and Quasi-Thin Objects: Steps Towards a New Taxonomy of Reality
BIANCHI, SILVIA
2021-06-09
Abstract
The main purpose of this work is to introduce a novel structuralist position, Weak Structuralism (WS), which is meant to solve the problems of the major structuralist positions in scientific and mathematical structuralism. The appeal to a relation of Mutual Grounding allows to characterize the dependence relation between structures and what can be defined quasi-thin objects. Structuralism is a prominent approach in both the philosophy of science and the philosophy of mathematics. Scientific and mathematical structuralism comprise a variety of approaches. In the present work, I mainly focus on scientific Ontic Structural Realism (OSR) and Stewart Shapiro's mathematical ante rem structuralism. These two views have a number of similarities, concerning the interpretation of structures as ontologically self-subsistent entities which are fundamental and ontologically prior to objects and the metaphysical decomposition of objects in their structural properties. An entirely structural interpretation of objects has raised related criticisms in both views: OSR is subject to ‘the relation without relata’ objection, dealing with the nature of quantum particles in quantum entanglement structures and questioning how we can have a structure without the individuals making up this structure. Mathematical ante rem structuralism faces the identity problem, concerning the individuation of numbers in abstract structures with non-trivial automorphisms, where mathematically distinct object turn out to be structurally indiscernible. My aim is to introduce Weak Structuralism (WS) as a novel structuralist position which is intended to avoid both objections. WS is based on a specific relation of Mutual Grounding which posits objects and structures in a new relationship of fundamentality: objects are grounded for their identity in the structure they belong to and structures are grounded for their existence in the objects constituting them. At the same time, the identity of structures is grounded independently of objects, with reference to higher, more abstract structures. WS fits into the framework of those non-foundationalist approaches, such as Infinitism and Coherentism, which aim at contradicting the standard metaphysical picture suggested by Metaphysical Foundationalism (MF). However, WS offers a further non-foundationalist alternative – characterized by a unique combination of properties – that combines the explanatory advantages of non-foundationalism with some intuitions of MF, thus escaping typical circularity problems affecting other non-foundationalist views.File | Dimensione | Formato | |
---|---|---|---|
Silvia Bianchi - (definitiva) tesi di dottorato .pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.