Flavin-containing monooxygenases (FMOs) are prevalent in all domains of life and epitomize integral detoxifying agents. Throughout evolution, many organisms have recruited copious xenobiotic degraders as a means to defend themselves against the vast range of toxins and foreign material that threaten the host. As such, the last 120 million years has resulted in an explosion in the number of FMOs in mammals with humans possessing five different isoforms, FMOs 1-5, and six pseudo genes. Extensive research has illustrated that these systems are distributed throughout the body, convey broad substrate scopes and are canonical Class B Flavin-dependent monooxygenases, accommodating a paired-Rossman fold motif that requires cofactors Flavin adenine dinucleotide (FAD) and reduced equivalents of Nicotinamide adenine dinucleotide phosphate (NADPH) for activity. Intriguingly, these enzymes oxidize a plethora of pharmaceuticals, making them of great interest in the pharmaceutical sector and drug-design. However, hitherto structural information regarding these systems remained bereft and represented a significant hurdle in the field of research. Using Ancestral Sequence Reconstruction (ASR), we sought out to expand our evolutionary understanding of the FMOs: delineating the emergence of the different isoforms throughout the Gnathostomata (jawed vertebrates) and gaining a deeper appreciation into the various substrate profiles that formed within different isoforms. Additionally, with several articles documenting the thermostability enhancement associated with ASR, we exploited this technique with the hope of generating more thermostable FMOs that may possess a greater tendency to crystallize.
Le monoossigenasi contenenti flavina (FMOs) sono presenti in molte forme di vita e possono essere definite come agenti disintossicanti integrali. Nel corso dell'evoluzione, molti organismi hanno sviluppato molti degradatori xenobiotici come mezzo per difendersi dalla vasta gamma di tossine e materiali estranei che minacciano l'ospite. In quanto tale, negli ultimi 120 milioni di anni questo ha comportato ad un'esplosione nel numero delle FMOs nei mammiferi; in particolare negli esseri umani sono presenti cinque diverse isoforme, FMO 1-5 e sei pseudo geni. Ricerche approfondite hanno dimostrato che questi sistemi sono distribuiti in tutto il corpo, accettano una vasta gamma di substrati e sono classificati come monoossigenasi flavina-dipendenti di Classe B, caratterizzate dalla presenza di un motivo paired Rossman fold che richiede i cofattori flavina adenina dinucleotide (FAD) ed equivalenti ridotti di Nicotinamide adenina dinucleotide fosfato (NADPH) per l'attività. Curiosamente, questi enzimi ossidano una pletora di farmaci, rendendoli di grande interesse nel settore farmaceutico e nella progettazione dei farmaci. Tuttavia, finora le informazioni strutturali relative a questi sistemi sono rimaste sconosciute e hanno rappresentato un ostacolo significativo nel campo della ricerca. Usando una tecnica chiamata Ancestral Sequence Reconstruction (ASR), abbiamo cercato di espandere la nostra comprensione evolutiva delle FMOs, delineando l'emergenza delle diverse isoforme attraverso gli Gnathostomata (vertebrati mascellari) e ottenendo un apprezzamento più profondo nei vari profili di substrato che si sono formati all'interno di diverse isoforme. Inoltre, con diversi articoli che documentano il miglioramento della stabilità termica associato all'ASR, abbiamo sfruttato questa tecnica con la speranza di generare FMOs più termostabili che potessero avere una maggiore tendenza a cristallizzare.
The Structural and Functional Characterization of Mammalian Flavin-containing Monooxygenases using Ancestral Sequence Reconstruction / Nicoll, CALLUM ROBERT. - (2021 Mar 12).
The Structural and Functional Characterization of Mammalian Flavin-containing Monooxygenases using Ancestral Sequence Reconstruction
NICOLL, CALLUM ROBERT
2021-03-12
Abstract
Flavin-containing monooxygenases (FMOs) are prevalent in all domains of life and epitomize integral detoxifying agents. Throughout evolution, many organisms have recruited copious xenobiotic degraders as a means to defend themselves against the vast range of toxins and foreign material that threaten the host. As such, the last 120 million years has resulted in an explosion in the number of FMOs in mammals with humans possessing five different isoforms, FMOs 1-5, and six pseudo genes. Extensive research has illustrated that these systems are distributed throughout the body, convey broad substrate scopes and are canonical Class B Flavin-dependent monooxygenases, accommodating a paired-Rossman fold motif that requires cofactors Flavin adenine dinucleotide (FAD) and reduced equivalents of Nicotinamide adenine dinucleotide phosphate (NADPH) for activity. Intriguingly, these enzymes oxidize a plethora of pharmaceuticals, making them of great interest in the pharmaceutical sector and drug-design. However, hitherto structural information regarding these systems remained bereft and represented a significant hurdle in the field of research. Using Ancestral Sequence Reconstruction (ASR), we sought out to expand our evolutionary understanding of the FMOs: delineating the emergence of the different isoforms throughout the Gnathostomata (jawed vertebrates) and gaining a deeper appreciation into the various substrate profiles that formed within different isoforms. Additionally, with several articles documenting the thermostability enhancement associated with ASR, we exploited this technique with the hope of generating more thermostable FMOs that may possess a greater tendency to crystallize.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_FINAL_CRN_Post1.pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
12.2 MB
Formato
Adobe PDF
|
12.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.