The frequency and the accumulation of medium–small flood events can cause severe impacts. In a climate change context, real-time monitoring and a fast risk assessment are needed to support the post-disaster phases. The present work presents a novel methodology that leverages the potential of earth observation data to produce a proof-of-concept for flood vulnerability assessment, serving as the basis for a Map Operational Service for the Lombardy region. The proof-of-concept is related to both flood hazard estimation and vulnerability assessment, considering the evaluation of the potentialities of the synthetic aperture radar data when used to feed a downstream service. Using the city of Pavia (Italy), which was affected by a flood event in November 2019, as a case study, we present an integrated flood impact approach that includes a combination of social and physical parameters. The results contribute to a processing chain designed as a pre-operational service where each data analytic retrieves thematic products to support the exposure and damage estimates based on earth observation-derived hazard products for emergency and recovery responses. Three different satellites covered more than 40 h of the flood’s evolution, supporting the great potential of the multi-sensor approach. Therefore, different sensor configurations in terms of spectral bands (X and C bands) and resolutions (from 10 to 1 m) provide a near real-time view of the event. Comparing the results obtained through the three hazard scenarios, a final social and physical Integrated Impact Index is obtained. The added value information leads to the determination of hotspots with which to prioritize effective interventions during emergency and recovery phases, crucial for capturing inherent conditions that allow communities to absorb impacts and cope with a damaging flood event.

Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy

Righini, Margherita;Gatti, Ignacio
;
Taramelli, Andrea;Arosio, Marcello;Valentini, Emiliana;Sapio, Serena;Schiavon, Emma
2024-01-01

Abstract

The frequency and the accumulation of medium–small flood events can cause severe impacts. In a climate change context, real-time monitoring and a fast risk assessment are needed to support the post-disaster phases. The present work presents a novel methodology that leverages the potential of earth observation data to produce a proof-of-concept for flood vulnerability assessment, serving as the basis for a Map Operational Service for the Lombardy region. The proof-of-concept is related to both flood hazard estimation and vulnerability assessment, considering the evaluation of the potentialities of the synthetic aperture radar data when used to feed a downstream service. Using the city of Pavia (Italy), which was affected by a flood event in November 2019, as a case study, we present an integrated flood impact approach that includes a combination of social and physical parameters. The results contribute to a processing chain designed as a pre-operational service where each data analytic retrieves thematic products to support the exposure and damage estimates based on earth observation-derived hazard products for emergency and recovery responses. Three different satellites covered more than 40 h of the flood’s evolution, supporting the great potential of the multi-sensor approach. Therefore, different sensor configurations in terms of spectral bands (X and C bands) and resolutions (from 10 to 1 m) provide a near real-time view of the event. Comparing the results obtained through the three hazard scenarios, a final social and physical Integrated Impact Index is obtained. The added value information leads to the determination of hotspots with which to prioritize effective interventions during emergency and recovery phases, crucial for capturing inherent conditions that allow communities to absorb impacts and cope with a damaging flood event.
2024
floods; vulnerability assessment; synthetic aperture radar; integrated impact; pre-operational services; multi-sensor earth observation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12076/16097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact