Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that diagrams form genuine notational systems, and I argue that this explains why they can play a role in the inferential structure of proofs without undermining their reliability. I then consider whether diagrams can be essential to the proofs in which they appear.
Who's Afraid of Mathematical Diagrams?
de toffoli silvia
2023-01-01
Abstract
Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that diagrams form genuine notational systems, and I argue that this explains why they can play a role in the inferential structure of proofs without undermining their reliability. I then consider whether diagrams can be essential to the proofs in which they appear.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.