A nautical port is an aerodynamically complex built-up area. The wind forces on ships in ports can be very different from those at open sea. Knowledge of the wind conditions in ports and of the wind forces acting on ships in ports are essential for safe maneuvering and mooring. This paper presents a case study in which wind forces on a large cruise ship moored at the quay of the Rotterdam Cruise Terminal are determined by 3D steady RANS simulations. The simulated wind speeds and wind directions are validated by on-site measurements. A previous study in which simulated wind forces on a container ship were validated with wind-tunnel tests, is also mentioned here to justify the selection of computational parameters for the case study. Near to the Cruise Terminal quay various high-rise buildings exist that can influence the wind loads on the ship. It is shown that the presence of the high-rise buildings can yield locally amplified surface pressure, but that, due to the large size of the ship, the net horizontal force decreases. However, the net vertical upward force increases. For smaller ships, nearby high-rise buildings could yield an increase in both horizontal and vertical forces.

CFD simulation of wind forces on ships in ports: Case study for the Rotterdam Cruise Terminal

Ricci, A.
;
2020-01-01

Abstract

A nautical port is an aerodynamically complex built-up area. The wind forces on ships in ports can be very different from those at open sea. Knowledge of the wind conditions in ports and of the wind forces acting on ships in ports are essential for safe maneuvering and mooring. This paper presents a case study in which wind forces on a large cruise ship moored at the quay of the Rotterdam Cruise Terminal are determined by 3D steady RANS simulations. The simulated wind speeds and wind directions are validated by on-site measurements. A previous study in which simulated wind forces on a container ship were validated with wind-tunnel tests, is also mentioned here to justify the selection of computational parameters for the case study. Near to the Cruise Terminal quay various high-rise buildings exist that can influence the wind loads on the ship. It is shown that the presence of the high-rise buildings can yield locally amplified surface pressure, but that, due to the large size of the ship, the net horizontal force decreases. However, the net vertical upward force increases. For smaller ships, nearby high-rise buildings could yield an increase in both horizontal and vertical forces.
2020
Nautical aerodynamics
Wind loads
Computational fluid dynamics (CFD)
Mooring forces port area
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12076/14683
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact