Frege’s views on the applications and the applicability of arithmetic, and mathematics in general, suggest a number of desiderata that philosophical account of arithmetic (mathematics) should meet. By rehearsing Frege’s remarks on these issues, I will first spell out these desiderata, and then consider how they may be relevant to contemporary platonist views – both on the broadly rationalist side, like Hale’s and Wright’s neo-logicism and Shapiro’s ante rem structuralism, and on the empiricist and naturalist side, like indispensabilist platonism and the sort of ‘default’ platonism suggested by Burgess and Rosen. I then conclude by offering some modest formulations of Frege’s Constraint, suggesting that it could in principle be met by non-logicist and non-platonist accounts.
Le idee di Frege sulle applicazioni e l'applicabilità dell'aritmetica, e della matematica in generale, suggeriscono un certo numero di requisiti che un resoconto filosofico dell'aritmetica (della matematica) dovrebbe soddisfare. Ripercorrendo i punti rilevanti delle opere di Frege, vengono enucleati e precisati questi requisiti. Si discute inoltre come essi possano essere valutati dai sostenitori di posizioni platoniste contemporanee, considerando sia quelle sul versante latamente razionalista, come il neo-logicismo di Hale e Wright e lo strutturalismo ante rem di Shapiro, sia quelle sul lato empirista e naturalista, come il platonismo indispensabilista e il platonismo "di default" di Burgess e Rosen. L'autore conclude offrendo alcune formulazioni deboli del Requisito di Applicabilità di Frege (Frege's Constraint). Una volta appropriatamente formulato, il Requisito di Applicabilità mostra di poter essere soddisfatto anche da posizioni non logiciste e non platoniste.
Applications, Applicability, and Frege's Constraint. Some Remarks on Contemporary Platonism
Sereni A
2013-01-01
Abstract
Frege’s views on the applications and the applicability of arithmetic, and mathematics in general, suggest a number of desiderata that philosophical account of arithmetic (mathematics) should meet. By rehearsing Frege’s remarks on these issues, I will first spell out these desiderata, and then consider how they may be relevant to contemporary platonist views – both on the broadly rationalist side, like Hale’s and Wright’s neo-logicism and Shapiro’s ante rem structuralism, and on the empiricist and naturalist side, like indispensabilist platonism and the sort of ‘default’ platonism suggested by Burgess and Rosen. I then conclude by offering some modest formulations of Frege’s Constraint, suggesting that it could in principle be met by non-logicist and non-platonist accounts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.