Il Teorema di Frege (FT) asserisce che gli assiomi dell’aritmetica di Peano al secondo ordine (PA2) possono essere derivati dal Principio di Hume (HP), secondo il quale il numero cardinale del concetto F è identico al numero cardinale del concetto G se e solo se F e G possono essere posti in corrispondenza uno-a-uno. Questo risultato è al centro del cosiddetto programma astrazionista in filosofia della matematica, che mira a fornire un fondamento per le teorie matematiche sulla base di principi della stessa forma di HP. Lo scopo di questo contributo è fornire una introduzione al Teorema di Frege e una panoramica sui suoi significati. Nella Sezione 2 presenteremo la derivazione del Teorema. La Sezione 3 è invece dedicata all’astrazionismo filosofico: distingueremo tra diversi tipi di tesi (semantiche, epistemologiche, ontologiche) che accompagnano l’uso del Teorema di Frege in filosofia della matematica, evidenziando come queste tesi siano collegate tra loro nel programma neofregeano. Infine, la Sezione 4 discute alcune obiezioni al programma astrazionista e ne presenta gli sviluppi più recenti.
Teorema di Frege
Luca Zanetti
;Ludovica Conti
2023-01-01
Abstract
Il Teorema di Frege (FT) asserisce che gli assiomi dell’aritmetica di Peano al secondo ordine (PA2) possono essere derivati dal Principio di Hume (HP), secondo il quale il numero cardinale del concetto F è identico al numero cardinale del concetto G se e solo se F e G possono essere posti in corrispondenza uno-a-uno. Questo risultato è al centro del cosiddetto programma astrazionista in filosofia della matematica, che mira a fornire un fondamento per le teorie matematiche sulla base di principi della stessa forma di HP. Lo scopo di questo contributo è fornire una introduzione al Teorema di Frege e una panoramica sui suoi significati. Nella Sezione 2 presenteremo la derivazione del Teorema. La Sezione 3 è invece dedicata all’astrazionismo filosofico: distingueremo tra diversi tipi di tesi (semantiche, epistemologiche, ontologiche) che accompagnano l’uso del Teorema di Frege in filosofia della matematica, evidenziando come queste tesi siano collegate tra loro nel programma neofregeano. Infine, la Sezione 4 discute alcune obiezioni al programma astrazionista e ne presenta gli sviluppi più recenti.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.