In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposomewide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.

Neurodevelopmental exposome: the effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment

Sarigiannis D.
;
Karakitsios S
2021

Abstract

In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposomewide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12076/12381
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact