Visually appreciable white matter (WM) changes have been described in obstructive sleep apnea (OSA). However, few data exist on the involvement of silent WM abnormalities. This prospective study investigated the microstructural integrity of normal-appearing white matter (NAWM) in male OSA patients before and after continuous positive airway pressure (CPAP) treatment, using a neuroimaging approach. Magnetic resonance imaging (MRI) was acquired from 32 participants (16 severe never-treated OSA and 16 controls). Diffusion tensor imaging (DTI) and Tract-Based Spatial Statistics (TBSS) were used to assess the microstructural NAWM changes in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In order to evaluate the efficacy of the therapy, OSA patients underwent MRI evaluations at baseline and after 3 months of treatment (follow-up). CPAP treatment significantly increased the FA in NAWM of the brain stem, corpus callosum and bilateral internal capsule of OSA patients at follow-up compared to baseline (p < 0.05, TFCE-corrected). OSA patients also showed increases in AD in the corpus callosum, superior corona radiata, and internal capsule of the right hemisphere (p < 0.05, TFCE-corrected) after CPAP treatment. A significant negative correlation was found between the FA of the corona radiata, corpus callosum, internal capsule, limbic structures, and neuropsychological scores at follow-up evaluation. No significant differences were found in MD and RD of NAWM in our patients after treatment. Our results demonstrate that FA and AD of NAWM in major tracts such as the corpus callosum and the internal capsule increased significantly after CPAP treatment, as a potential beneficial effect of ventilatory therapy. The recovery of NAWM alterations might also be related to the improvement in the neurocognitive profile, suggesting that nonclearly visible WM alterations may contribute to the physiopathology of OSA-related cognitive impairment.
Microstructural changes in normal-appearing white matter in male sleep apnea patients are reversible after treatment: A pilot study
Canessa, Nicola;
2021-01-01
Abstract
Visually appreciable white matter (WM) changes have been described in obstructive sleep apnea (OSA). However, few data exist on the involvement of silent WM abnormalities. This prospective study investigated the microstructural integrity of normal-appearing white matter (NAWM) in male OSA patients before and after continuous positive airway pressure (CPAP) treatment, using a neuroimaging approach. Magnetic resonance imaging (MRI) was acquired from 32 participants (16 severe never-treated OSA and 16 controls). Diffusion tensor imaging (DTI) and Tract-Based Spatial Statistics (TBSS) were used to assess the microstructural NAWM changes in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In order to evaluate the efficacy of the therapy, OSA patients underwent MRI evaluations at baseline and after 3 months of treatment (follow-up). CPAP treatment significantly increased the FA in NAWM of the brain stem, corpus callosum and bilateral internal capsule of OSA patients at follow-up compared to baseline (p < 0.05, TFCE-corrected). OSA patients also showed increases in AD in the corpus callosum, superior corona radiata, and internal capsule of the right hemisphere (p < 0.05, TFCE-corrected) after CPAP treatment. A significant negative correlation was found between the FA of the corona radiata, corpus callosum, internal capsule, limbic structures, and neuropsychological scores at follow-up evaluation. No significant differences were found in MD and RD of NAWM in our patients after treatment. Our results demonstrate that FA and AD of NAWM in major tracts such as the corpus callosum and the internal capsule increased significantly after CPAP treatment, as a potential beneficial effect of ventilatory therapy. The recovery of NAWM alterations might also be related to the improvement in the neurocognitive profile, suggesting that nonclearly visible WM alterations may contribute to the physiopathology of OSA-related cognitive impairment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.