Beach dune systems are important for coastal zone ecosystems as they provide natural sea defences that dissipate wave energy. Geomorphological models of this near-shore topography require site-specific sediment composition, grain size and moisture content as inputs. Hyperspectral, field radiometry and LiDAR remote sensing can be used as tools by providing synoptic maps of these properties. However, multi-remote sensing of near-shore beach images can only be interpreted if there are adequate bio-geophysical or empirical models for information extraction. Our aim was thus to model the effects of varying sediment properties on the reflectance in both field and laboratory conditions within the FHyL (Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR) procedure, using a multisource dataset (airborne Hyperspectral – MIVIS and topographic LiDAR – Hawk-eye II and field radiometry). The methodology consisted of (i) acquisition of simultaneous multi-source datasets (airborne Hyperspectral – MIVIS and topographic LiDAR – Hawk-eye) (ii) hyperspectral measurements of sediment mixtures with varying physical characteristics (moisture, grain size and minerals) in field and laboratory conditions, (iii) determination and quantification of specific absorption features, and (iv) correlation between the absorption features and physical parameters cited above.

Spectral characterization of coastal sediments using Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR Data (FHyL)

Taramelli A;
2015

Abstract

Beach dune systems are important for coastal zone ecosystems as they provide natural sea defences that dissipate wave energy. Geomorphological models of this near-shore topography require site-specific sediment composition, grain size and moisture content as inputs. Hyperspectral, field radiometry and LiDAR remote sensing can be used as tools by providing synoptic maps of these properties. However, multi-remote sensing of near-shore beach images can only be interpreted if there are adequate bio-geophysical or empirical models for information extraction. Our aim was thus to model the effects of varying sediment properties on the reflectance in both field and laboratory conditions within the FHyL (Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR) procedure, using a multisource dataset (airborne Hyperspectral – MIVIS and topographic LiDAR – Hawk-eye II and field radiometry). The methodology consisted of (i) acquisition of simultaneous multi-source datasets (airborne Hyperspectral – MIVIS and topographic LiDAR – Hawk-eye) (ii) hyperspectral measurements of sediment mixtures with varying physical characteristics (moisture, grain size and minerals) in field and laboratory conditions, (iii) determination and quantification of specific absorption features, and (iv) correlation between the absorption features and physical parameters cited above.
Hyperspectral; Linear spectral mixing analysis; Field radiometry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12076/1030
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact