Machine Learning (ML) systems, whether predictive or generative, not only reproduce biases and stereotypes but, even more worryingly, amplify them. Strategies for bias detection and mitigation typically focus on either ex post or ex ante approaches, but are always limited to two steps analyses. In this paper, we introduce the notion of Bias Amplification Chain (BAC) as a series of steps in which bias may be amplified during the design, development and deployment phases of trained models. We provide an application to such notion in the credit scoring setting and a quantitative analysis through the BRIO tool.
Bias Amplification Chains in ML-based Systems with an Application to Credit Scoring
Alessandro Buda
;
2024-01-01
Abstract
Machine Learning (ML) systems, whether predictive or generative, not only reproduce biases and stereotypes but, even more worryingly, amplify them. Strategies for bias detection and mitigation typically focus on either ex post or ex ante approaches, but are always limited to two steps analyses. In this paper, we introduce the notion of Bias Amplification Chain (BAC) as a series of steps in which bias may be amplified during the design, development and deployment phases of trained models. We provide an application to such notion in the credit scoring setting and a quantitative analysis through the BRIO tool.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.