Reinforced concrete (RC) buildings with masonry infills represent a prevalent building typology commonly found in the Southern Mediterranean building stock. Many of these structures were constructed before the enforcement of seismic regulations, leading to non-ductile failure mechanisms. Consequently, estimating their seismic fragility and associated risk is a crucial yet challenging aspect for researchers and practitioners. Accurate assessment often requires detailed numerical models and seismic hazard characterisation, involving extensive non-linear dynamic analyses with significant computational demands. To this end, the initial part of this study introduces an unbiased seismic fragility estimation methodology for the simplified evaluation of infilled RC frame structures in both collapsing and non-collapsing scenarios. The outcome is a pushover-based approach which implements a novel set of empirical relationships linking seismic behavior to pushover curve parameters for the direct estimation of seismic vulnerability. The use of average spectral acceleration as the intensity measure is highlighted for its advantages in reducing bias compared to other approaches. Validation is performed through comparison with a hazard-consistent assessment of case studies from a database of three-dimensional archetype building models developed to capture the evolution of building codes and architectural features in Italy. Moreover, this study presents a pushover-based methodology, termed PB-Risk, for the direct evaluation of seismic risk in non-ductile infilled frame structures. The methodology provides a step-by-step framework for simplified hazard characterization, vulnerability assessment, and subsequent seismic risk evaluation. It is practical, code-based, and suitable for adoption within risk classification guidelines. Case study applications demonstrated the efficacy and robustness of the proposed PB-Risk methodology in characterizing seismic risk compared to other simplified non-linear static formulations for infilled frame buildings. Furthermore, this thesis introduces a simplified pushover-based loss assessment methodology, termed PB-Loss. PB-Loss utilizes storey loss functions which are a simplified alternative to the computationally intense component-based loss assessment. These functions describe repair costs directly as a function of structural demands, offering a practical approach for building-specific loss assessments Generalised SLFs were implemented within a framework for simplified pushover-based seismic risk estimation and with structural response parameters, easily acquired, to estimate economic losses. The proposed method is demonstrated through a case study application to infilled RC frame structures, showing excellent accuracy and robustness compared to existing methodologies. The study suggests its potential adoption in future codes and guidelines. Finally, in the context of regional seismic risk assessment, particularly for non-ductile infilled RC building portfolios in earthquake-prone areas, this study presents analytical fragility functions for large-scale seismic risk applications. Derived from a comprehensive database of archetype buildings reflecting the temporal evolution in construction practices, the fragility functions consider multiple damage states and use average spectral acceleration as the intensity measure due to its high efficiency and sufficiency properties. Verification of analytical fragility functions is performed through comparison with empirical data from past earthquakes in Italy. The empirical data consists of average spectral acceleration-based ground-motion fields conditioned on seismic stations data to account for the “ground truth” following each event. The study demonstrates the integration of recent advances in analytical fragility function development with past empirical observations to provide more accurate damage estimates for regional assessments.
Gli edifici in cemento armato (CA) con riempimenti in muratura rappresentano una tipologia edilizia comune nel patrimonio edilizio del Mediterraneo Meridionale. Molti di questi edifici sono stati costruiti prima dell'applicazione delle normative sismiche, risultando in meccanismi di cedimento non duttili. La stima della loro fragilità sismica e del rischio associato è cruciale ma sfidante per ricercatori e professionisti, richiedendo spesso modelli numerici dettagliati e caratterizzazione del pericolo sismico tramite analisi dinamiche non lineari computazionalmente intense. Lo studio propone una metodologia imparziale di stima della fragilità sismica per la valutazione semplificata di strutture in CA con telai riempiti, sia in caso di crollo che di non crollo. Si utilizza un approccio basato sulla pushover che implementa relazioni empiriche innovative legando il comportamento sismico ai parametri della curva pushover per stimare direttamente la vulnerabilità sismica. Si evidenzia l'uso dell'accelerazione spettrale media come misura di intensità per ridurre il bias rispetto ad altri approcci, con convalida attraverso confronti con studi di caso da un database di modelli tridimensionali sviluppati per catturare l'evoluzione delle normative edilizie in Italia. Il lavoro presenta inoltre una metodologia basata sulla pushover, denominata PB-Risk, per la valutazione diretta del rischio sismico in strutture con telai riempiti non duttili. Questa fornisce un quadro passo-passo per la caratterizzazione semplificata del pericolo, la valutazione della vulnerabilità e la successiva valutazione del rischio sismico, pratico e adatto all'adozione nelle linee guida di classificazione del rischio, con dimostrazioni di efficacia nei casi studio. Inoltre, la tesi introduce una metodologia semplificata di valutazione delle perdite basata sulla pushover, chiamata PB-Loss, utilizzando funzioni di perdita di piano come alternativa semplificata alla valutazione intensiva basata sui componenti. Queste funzioni descrivono i costi di riparazione direttamente in funzione delle richieste strutturali, offrendo un approccio pratico per valutazioni specifiche degli edifici, dimostrato con elevata precisione e robustezza nei confronti di metodologie esistenti in un caso studio. Infine, nel contesto della valutazione del rischio sismico regionale, lo studio presenta funzioni di fragilità analitiche per applicazioni su larga scala. Derivate da un ampio database di edifici archetipici, queste funzioni considerano stati di danneggiamento multipli, utilizzando l'accelerazione spettrale media come misura di intensità. La verifica viene effettuata attraverso il confronto con dati empirici di terremoti passati in Italia, dimostrando l'integrazione di recenti sviluppi analitici con osservazioni empiriche per stime danni più accurate nelle valutazioni regionali. L'obiettivo generale del manoscritto è fornire a professionisti e decisori strumenti robusti per valutazioni del rischio specifiche degli edifici e regionali in modo semplificato, dimostrando costantemente, attraverso esercitazioni di convalida, l'efficacia e la precisione delle metodologie proposte, pronte per l'adozione nelle prossime linee guida.
Progressi nelle metodologie basate sul rischio e sulle perdite per la valutazione di edifici in calcestruzzo armato con tamponature / Nafeh, AL MOUAYED BELLAH. - (2024 May 23).
Progressi nelle metodologie basate sul rischio e sulle perdite per la valutazione di edifici in calcestruzzo armato con tamponature.
NAFEH, AL MOUAYED BELLAH
2024-05-23
Abstract
Reinforced concrete (RC) buildings with masonry infills represent a prevalent building typology commonly found in the Southern Mediterranean building stock. Many of these structures were constructed before the enforcement of seismic regulations, leading to non-ductile failure mechanisms. Consequently, estimating their seismic fragility and associated risk is a crucial yet challenging aspect for researchers and practitioners. Accurate assessment often requires detailed numerical models and seismic hazard characterisation, involving extensive non-linear dynamic analyses with significant computational demands. To this end, the initial part of this study introduces an unbiased seismic fragility estimation methodology for the simplified evaluation of infilled RC frame structures in both collapsing and non-collapsing scenarios. The outcome is a pushover-based approach which implements a novel set of empirical relationships linking seismic behavior to pushover curve parameters for the direct estimation of seismic vulnerability. The use of average spectral acceleration as the intensity measure is highlighted for its advantages in reducing bias compared to other approaches. Validation is performed through comparison with a hazard-consistent assessment of case studies from a database of three-dimensional archetype building models developed to capture the evolution of building codes and architectural features in Italy. Moreover, this study presents a pushover-based methodology, termed PB-Risk, for the direct evaluation of seismic risk in non-ductile infilled frame structures. The methodology provides a step-by-step framework for simplified hazard characterization, vulnerability assessment, and subsequent seismic risk evaluation. It is practical, code-based, and suitable for adoption within risk classification guidelines. Case study applications demonstrated the efficacy and robustness of the proposed PB-Risk methodology in characterizing seismic risk compared to other simplified non-linear static formulations for infilled frame buildings. Furthermore, this thesis introduces a simplified pushover-based loss assessment methodology, termed PB-Loss. PB-Loss utilizes storey loss functions which are a simplified alternative to the computationally intense component-based loss assessment. These functions describe repair costs directly as a function of structural demands, offering a practical approach for building-specific loss assessments Generalised SLFs were implemented within a framework for simplified pushover-based seismic risk estimation and with structural response parameters, easily acquired, to estimate economic losses. The proposed method is demonstrated through a case study application to infilled RC frame structures, showing excellent accuracy and robustness compared to existing methodologies. The study suggests its potential adoption in future codes and guidelines. Finally, in the context of regional seismic risk assessment, particularly for non-ductile infilled RC building portfolios in earthquake-prone areas, this study presents analytical fragility functions for large-scale seismic risk applications. Derived from a comprehensive database of archetype buildings reflecting the temporal evolution in construction practices, the fragility functions consider multiple damage states and use average spectral acceleration as the intensity measure due to its high efficiency and sufficiency properties. Verification of analytical fragility functions is performed through comparison with empirical data from past earthquakes in Italy. The empirical data consists of average spectral acceleration-based ground-motion fields conditioned on seismic stations data to account for the “ground truth” following each event. The study demonstrates the integration of recent advances in analytical fragility function development with past empirical observations to provide more accurate damage estimates for regional assessments.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Nafeh_Def.pdf
accesso aperto
Descrizione: Tesi def
Tipologia:
Tesi di dottorato
Dimensione
10.47 MB
Formato
Adobe PDF
|
10.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.