Since the beginning of 2020, the SARS-CoV-2 pandemic has drawn the world's attention to the danger of infectious agents, and to the need for ready-to-use therapies that are effective, with low risks and side effects for the patients. Despite the drama of today's situation, it is necessary to realize that there are many other infectious diseases in the world, which every year lead to the death of millions of people. Tuberculosis (TB), caused by the bacillus Mycobacterium tuberculosis (Mtb), remains a worldwide spread disease, with over 1.5 million deaths every year. TB is the first cause of death from a single pathogen, and its therapy requires daily doses of multiple antibiotics over a period of 6 months, but can be extended due to the onset of drug-resistant strains. For years, the efforts of our laboratory and international partners have focused on the identification of new compounds with antitubercular activity, as well as on the understanding of the molecular and biochemical mechanisms of Mtb drug resistance. In this thesis, we proceeded along the same path, with the implementation of two complementary approaches: the “Target-to-Drug” and the “Drug-to-Target”. Firstly, through screening of compounds libraries, it was possible to identify hit compounds with high anti-TB activity, of which we studied the possible mechanism of action. On the other hand, we studied the polymorphisms associated with bedaquiline resistance, to deepen the knowledge on the mechanisms of resistance to this newly introduced drug and help overcome the spreading of bedaquiline-resistant Mtb strains in clinical settings. In addition, since the process from ideation to clinical use of a new drug is slow and difficult, we proceeded with a repurposing study of the Avermectins, anthelmintic compounds used in veterinary practice, of which Selamectin showed the greatest anti-TB activity. This study revealed that Selamectin affects the biosynthesis of the mycobacterial cell wall, through the inhibition of the well-known drug target Decaprenylphosphoryl-beta-D-ribose oxidase (DprE1). Moreover, DprE1 was further investigated through a “Target to Drug” approach, to identify new covalent inhibitors. A similar approach was also used for the characterization of another target, the Mg2+-dependent salicylate synthase (MbtI), that together with structural studies afforded new inhibitors. Furthermore, knowing that DprE1 works in concert with the Decaprenylphosphoryl-2-keto-beta-D-erythro-pentose reductase (DprE2), co-expression assays of the two Mycobacterium smegmatis enzymes in Escherichia coli was carried out, as well as the study of the DprE1-DprE2 complex activity. Given our experience with mycobacteria, this thesis project expanded towards the study of non-tuberculous mycobacteria (NTM), in particular Mycobacterium abscessus (Mab), an emerging pathogen among Cystic Fibrosis (CF) patients. CF is a genetic disease that can affect several organs, but generally leads to accumulation of dense mucus in the lower airways, with reduced clearance, and consequent stagnation, which produces fertile ground for bacterial proliferation. Mab infections in CF patients are generally related to low resolution and are a contraindication for lung transplantation, often the only salvation for CF patients.
Dall'inizio del 2020, la pandemia da SARS-CoV-2 ha attirato l'attenzione del mondo sulla pericolosità degli agenti infettivi e sulla necessità di avere terapie di pronto utilizzo, che siano efficaci, e con basso rischio ed effetti collaterali per i pazienti. Nonostante il dramma della situazione odierna, è necessario prendere coscienza che nel mondo ci sono molte altre malattie infettive, che ogni anno portano alla morte di milioni di persone. La Tubercolosi (TB), causata dal bacillo Mycobacterium tuberculosis (Mtb), rimane ancora oggi una malattia diffusa in tutto il mondo, con oltre 1,5 milioni di morti ogni anno. La TB è la prima causa di morte causata da un singolo patogeno, la cui terapia richiede dosi giornaliere di più antibiotici per un periodo di almeno 6 mesi, che può essere esteso a causa dell'insorgenza di ceppi farmacoresistenti. Da anni, gli sforzi del nostro laboratorio si sono concentrati sull'identificazione di nuovi composti con attività antitubercolare, nonché sulla comprensione dei meccanismi molecolari e biochimici in Mtb alla base della resistenza ai farmaci. In questa tesi si è proceduto sullo stesso percorso, con l'implementazione di due approcci complementari: il “Target-to-Drug” e il “Drug-to-Target”. In primo luogo, attraverso lo screening di librerie di composti, è stato possibile identificare nuove molecole con elevata attività antitubercolare, di cui si è proceduto con lo studio del possibile meccanismo d'azione. Sapendo che lo sviluppo di ceppi resistenti ai farmaci è un reale problema nella pratica clinica, è stato effettuato uno studio dei polimorfismi associati alla resistenza alla Bedaquilina, un farmaco di recente introduzione, per approfondire la conoscenza sui meccanismi di resistenza collegati al suo utilizzo. Inoltre, poiché il processo dall'ideazione all'uso clinico di un nuovo farmaco è generalmente lento e difficoltoso, si è proceduto con uno studio di ‘repurposing’ delle Avermectine, composti antielmintici utilizzati nella pratica veterinaria, tra i quali la Selamectina ha mostrato la massima attività antitubercolare. Questo studio ha rivelato che la Selamectina influenza la biosintesi della parete cellulare dei micobatteri, attraverso l'inibizione del noto bersaglio farmacologico Decaprenilfosforil-beta-D-ribosio ossidasi (DprE1). Inoltre, DprE1 è stato ulteriormente caratterizzato attraverso un approccio "Target to Drug", che ha portato all’identificazione di nuovi inibitori covalenti. Un approccio simile è stato utilizzato anche per la caratterizzazione di un altro target in Mtb, il salicilato sintasi Mg2+dipendente (MbtI), che insieme a studi strutturali ha fornito nuovi inibitori per questo bersaglio farmacologico. Inoltre, sapendo che DprE1 lavora di concerto con la Decaprenilfosforil-2-cheto-beta-D-eritro-pentoso reduttasi (DprE2), è stato effettuato un saggio di co-espressione dei due enzimi di Mycobacterium smegmatis in Escherichia coli, e abbiamo valutato l’attività del complesso in vitro. Data la nostra esperienza con i micobatteri, questo progetto di tesi si è spostato verso lo studio dei micobatteri non tubercolari (NTM), focalizzandosi in particolar modo sullo studio di Mycobacterium abscessus (Mab), un patogeno emergente tra i pazienti con fibrosi cistica (FC). La FC è una malattia genetica multisistemica, che generalmente porta ad accumulo di muco denso nei polmoni, con ridotta clearance, e conseguente ristagno, producendo terreno fertile per la proliferazione batterica. Le infezioni da Mab nei pazienti FC sono generalmente correlate ad una scarsa risoluzione e sono controindicazione per il trapianto di polmone, spesso l'unica salvezza per i pazienti FC.
Going on the road of antimycobacterial drug discovery: new, old, repurposed drugs and mechanisms of action / Sammartino, JOSE' CAMILLA. - (2021 Jun 22).
Going on the road of antimycobacterial drug discovery: new, old, repurposed drugs and mechanisms of action.
SAMMARTINO, JOSE' CAMILLA
2021-06-22
Abstract
Since the beginning of 2020, the SARS-CoV-2 pandemic has drawn the world's attention to the danger of infectious agents, and to the need for ready-to-use therapies that are effective, with low risks and side effects for the patients. Despite the drama of today's situation, it is necessary to realize that there are many other infectious diseases in the world, which every year lead to the death of millions of people. Tuberculosis (TB), caused by the bacillus Mycobacterium tuberculosis (Mtb), remains a worldwide spread disease, with over 1.5 million deaths every year. TB is the first cause of death from a single pathogen, and its therapy requires daily doses of multiple antibiotics over a period of 6 months, but can be extended due to the onset of drug-resistant strains. For years, the efforts of our laboratory and international partners have focused on the identification of new compounds with antitubercular activity, as well as on the understanding of the molecular and biochemical mechanisms of Mtb drug resistance. In this thesis, we proceeded along the same path, with the implementation of two complementary approaches: the “Target-to-Drug” and the “Drug-to-Target”. Firstly, through screening of compounds libraries, it was possible to identify hit compounds with high anti-TB activity, of which we studied the possible mechanism of action. On the other hand, we studied the polymorphisms associated with bedaquiline resistance, to deepen the knowledge on the mechanisms of resistance to this newly introduced drug and help overcome the spreading of bedaquiline-resistant Mtb strains in clinical settings. In addition, since the process from ideation to clinical use of a new drug is slow and difficult, we proceeded with a repurposing study of the Avermectins, anthelmintic compounds used in veterinary practice, of which Selamectin showed the greatest anti-TB activity. This study revealed that Selamectin affects the biosynthesis of the mycobacterial cell wall, through the inhibition of the well-known drug target Decaprenylphosphoryl-beta-D-ribose oxidase (DprE1). Moreover, DprE1 was further investigated through a “Target to Drug” approach, to identify new covalent inhibitors. A similar approach was also used for the characterization of another target, the Mg2+-dependent salicylate synthase (MbtI), that together with structural studies afforded new inhibitors. Furthermore, knowing that DprE1 works in concert with the Decaprenylphosphoryl-2-keto-beta-D-erythro-pentose reductase (DprE2), co-expression assays of the two Mycobacterium smegmatis enzymes in Escherichia coli was carried out, as well as the study of the DprE1-DprE2 complex activity. Given our experience with mycobacteria, this thesis project expanded towards the study of non-tuberculous mycobacteria (NTM), in particular Mycobacterium abscessus (Mab), an emerging pathogen among Cystic Fibrosis (CF) patients. CF is a genetic disease that can affect several organs, but generally leads to accumulation of dense mucus in the lower airways, with reduced clearance, and consequent stagnation, which produces fertile ground for bacterial proliferation. Mab infections in CF patients are generally related to low resolution and are a contraindication for lung transplantation, often the only salvation for CF patients.File | Dimensione | Formato | |
---|---|---|---|
Sammartino_PhDThesis_Revised.pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
70.76 MB
Formato
Adobe PDF
|
70.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.