For many years, the discovery of novel small molecule drugs has been performed by screening large libraries of compounds one-by-one against a validated target of pharmaceutical interest. Given that conventional methodologies based on high-throughput screening (HTS) are highly demanding in terms of time and logistics, novel screening platforms have been developed and implemented in modern drug discovery. In this context, DNA-encoded chemical libraries (DECLs) have emerged as a powerful and versatile tool for lead identification. In a classical DECL setting, small organic molecules are individually coupled to distinctive DNA oligonucleotide tags which serve as amplifiable identification barcodes and facilitate the construction of combinatorial libraries of unprecedented size. Typically, the identification of binding molecules from DECLs relies on affinity selection procedures against a solid-supported target, followed by PCR amplification and DNA sequencing. However, the performance of affinity selection procedures has been narrowly investigated so far. This thesis presents a strategy for the quantitative analysis of affinity selection experiments using three sulfonamide-functionalized ligands with different affinity to carbonic anhydrase IX (CAIX) – a well-known validated tumor associated antigen – as model compounds. Firstly, quantitative PCR procedures (qPCR) were implemented in order to evaluate the recovery and selectivity for affinity selection procedures performed using conventional solid supports. Secondly, the recovery of individual CAIX ligands was determined in the context of a single pharmacophore library, containing 360000 DNA-encoded compounds. Collectively, the results show that conventional affinity capture procedures are efficient for the identification of high-affinity ligands but may be suboptimal for the recovery of binders with a Kd in the micromolar range. Indeed, micromolar binders are characterized by limited kinetic stability of their complex with the cognate protein target, leading to loss of recovery upon implementation of stringent washing procedures. In this context, the use of photocrosslinking reactions may help to “lock the equilibrium” and prevent the disruption of the interaction between putative binders and their target proteins. Thus, we aimed at developing and performing a systematic evaluation of a novel photocrosslinking screening methodology, featuring a library displayed on single-stranded DNA, which could be hybridized to a complementary oligonucleotide carrying a diazirine photoreactive group as a terminal crosslinker. Investigation of model selection experiments against CAIX revealed a recovery of individual binders up to 10%, which was mainly limited due to the high reactivity of intermediate carbene species, generated during the photocrosslinking reaction. In the first set of experiments, model sulfonamide ligands featuring acetazolamide and p-phenysulfonamide were recovered more efficiently compared to their counterparts based on 3-sulfamoyl benzoic acid, which were characterized by a lower binding affinity towards the target. Systematic optimization of experimental parameters revealed suitable conditions for the implementation in a real DECL library, featuring 669’240 combinations of two sets of building blocks. Compared to conventional affinity capture procedures, the photocrosslinking methodology provided better discrimination towards the identification of low-affinity CAIX ligands over the background noise. The results show that DECL libraries in the single-stranded format are versatile discovery tools that can be used for the construction of encoded self-assembling chemical libraries (ESAC) and for the implementation of photocrosslinking methodologies. The present results support both methodologies (affinity capture and photocrosslinking strategies) for the identification of new binders, which could be lost within the screening process.
Tradizionalmente, la scoperta di nuovi farmaci inizia con una fase di screening di vaste librerie di composti chimici mirati contro uno specifico target di interesse. Dato che le procedure convenzionali basate su metodi “high-throughput” possono essere subottimali in termini di tempo e costi di ricerca, nel corso degli anni sono state sviluppate ed implementate nuove tecnologie per l’utilizzo nella moderna ricerca farmaceutica. In questo contesto, l’utilizzo di librerie chimiche codificate dal DNA è stato determinante per la scoperta di nuove molecole farmacologicamente attive. La costruzione di una libreria prevede la coniugazione di ciascuna molecola organica a uno specifico frammento di DNA che codifica inequivocabilmente la sua natura e facilita la sintesi di vaste librerie combinatoriali di composti chimici. Tipicamente, la ricerca di ligandi in grado di legare determinati targets proteici si basa su procedure di screening di affinità contro una proteina immobilizzata su una determinata fase solida, seguita da amplificazione in PCR e tecniche di sequenziamento del DNA. Tuttavia, il rendimento delle procedure moderne utilizzate per lo screening di librerie codificate dal DNA non è stato ancora sufficientemente valutato. In questa tesi è presentata una strategia per l’analisi quantitativa dell’efficienza di metodologie di selezione, utilizzando tre ligandi modello basati su solfonammidi, in grado di legare l’anidrasi carbonica IX (CAIX) con affinità diversa. Inizialmente, il lavoro ha previsto l’implementazione di procedure di amplificazione in PCR quantitativa per l’analisi quantitativa della resa di recupero e della selettività dei metodi di selezione utilizzando supporti solidi comunemente utilizzati in cromatografia di affinità. Successivamente, la quantificazione della resa di ciascun ligando è stata determinata utilizzando una libreria a singolo farmacoforo, contenente 360’000 molecole organiche. I risultati hanno evidenziato che le procedure di selezione convenzionali sono efficienti per l’identificazione di ligandi ad alta affinità, ma possono essere subottimali nel riconoscimento di molecole caratterizzate da una costante di dissociazione micromolare. I complessi tra ligandi micromolari e i rispettivi targets sono infatti caratterizzati da una bassa stabilità cinetica, che puó portare a una rottura del legame e a un abbassamento della resa di recupero, a seguito della fase di lavaggio per rimuovere i composti non-leganti. Per questo motivo, si possono utilizzare determinate procedure di “photocrosslinking”, per poter stabilizzare l’interazione tra ligandi e targets e bloccare l’equilibrio irreversibilmente. In questo lavoro di tesi è stata sviluppata ed eseguita una valutazione sistematica di una procedura di selezione basata su “photocrosslinking”, utilizzando una libreria costruita su un singolo filamento di DNA e ibridato a un oligonucleotide coniugato a una diazirina fotoreattiva. L’analisi di procedure di screening utilizzando composti modello e anidrasi carbonica IX ha permesso la determinazione di rese di recupero fino al 10%, limitate dall’elevata reattività delle specie carbeniche intermedie generate durante la reazione di crosslinking. Inizialmente, i ligandi solfonammidici contenenti acetazolamide e p-fenilsolfonammide sono stati recuperati con un’efficienza maggiore, al contrario di quelli basati su m-fenilsolfonammidi, caratterizzati da una costante di affinità meno favorevole. Lo studio sistematico delle variabili sperimentali ha permesso l’ottimizzazione della procedura e l’implementazione per lo screening di una libreria, contenente 669’240 molecole organiche. In confronto alle procedure di selezione tradizionali basate su cromatografia di affinità, la metodologia di “photocrosslinking” ha permesso una migliore discriminazione dei ligandi micromolari dal resto della libreria.
Development and optimization of versatile screening methodologies in the context of DNA-encode chemical libraries / Sannino, Alessandro. - (2021 Mar 12).
Development and optimization of versatile screening methodologies in the context of DNA-encode chemical libraries
SANNINO, ALESSANDRO
2021-03-12
Abstract
For many years, the discovery of novel small molecule drugs has been performed by screening large libraries of compounds one-by-one against a validated target of pharmaceutical interest. Given that conventional methodologies based on high-throughput screening (HTS) are highly demanding in terms of time and logistics, novel screening platforms have been developed and implemented in modern drug discovery. In this context, DNA-encoded chemical libraries (DECLs) have emerged as a powerful and versatile tool for lead identification. In a classical DECL setting, small organic molecules are individually coupled to distinctive DNA oligonucleotide tags which serve as amplifiable identification barcodes and facilitate the construction of combinatorial libraries of unprecedented size. Typically, the identification of binding molecules from DECLs relies on affinity selection procedures against a solid-supported target, followed by PCR amplification and DNA sequencing. However, the performance of affinity selection procedures has been narrowly investigated so far. This thesis presents a strategy for the quantitative analysis of affinity selection experiments using three sulfonamide-functionalized ligands with different affinity to carbonic anhydrase IX (CAIX) – a well-known validated tumor associated antigen – as model compounds. Firstly, quantitative PCR procedures (qPCR) were implemented in order to evaluate the recovery and selectivity for affinity selection procedures performed using conventional solid supports. Secondly, the recovery of individual CAIX ligands was determined in the context of a single pharmacophore library, containing 360000 DNA-encoded compounds. Collectively, the results show that conventional affinity capture procedures are efficient for the identification of high-affinity ligands but may be suboptimal for the recovery of binders with a Kd in the micromolar range. Indeed, micromolar binders are characterized by limited kinetic stability of their complex with the cognate protein target, leading to loss of recovery upon implementation of stringent washing procedures. In this context, the use of photocrosslinking reactions may help to “lock the equilibrium” and prevent the disruption of the interaction between putative binders and their target proteins. Thus, we aimed at developing and performing a systematic evaluation of a novel photocrosslinking screening methodology, featuring a library displayed on single-stranded DNA, which could be hybridized to a complementary oligonucleotide carrying a diazirine photoreactive group as a terminal crosslinker. Investigation of model selection experiments against CAIX revealed a recovery of individual binders up to 10%, which was mainly limited due to the high reactivity of intermediate carbene species, generated during the photocrosslinking reaction. In the first set of experiments, model sulfonamide ligands featuring acetazolamide and p-phenysulfonamide were recovered more efficiently compared to their counterparts based on 3-sulfamoyl benzoic acid, which were characterized by a lower binding affinity towards the target. Systematic optimization of experimental parameters revealed suitable conditions for the implementation in a real DECL library, featuring 669’240 combinations of two sets of building blocks. Compared to conventional affinity capture procedures, the photocrosslinking methodology provided better discrimination towards the identification of low-affinity CAIX ligands over the background noise. The results show that DECL libraries in the single-stranded format are versatile discovery tools that can be used for the construction of encoded self-assembling chemical libraries (ESAC) and for the implementation of photocrosslinking methodologies. The present results support both methodologies (affinity capture and photocrosslinking strategies) for the identification of new binders, which could be lost within the screening process.File | Dimensione | Formato | |
---|---|---|---|
Alessandro_Sannino_PhD_Thesis_SBB_XXXIII_final.pdf
Open Access dal 13/03/2024
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
8.9 MB
Formato
Adobe PDF
|
8.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.