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ABSTRACT 

Collagen biosynthesis is an intricate pathway which requires multiple post-translational 

modifications (PTMs) essential for the generation of mature, triple-helical molecules. 

Among the PTMs, the most important are specific collagen lysine modifications which 

occur in the endoplasmic reticulum at very initial stages of collagen biogenesis. Lysines 

are subsequentily hydroxylated and glycosylated, which serves as site for the formation of 

extracellular cross-links, leading to fibrillary or meshwork superstructures in the 

extracellular matrix (ECM). Enzymes belonging to the family of collagen lysyl 

hydroxylases (LH or PLOD) catalyze lysine hydroxylation of collagens using Fe2+, 2-

oxoglutarate (2-OG), ascorbate and molecular oxygen. In humans, PLOD genes encode 

for three LH enzyme isoforms: LH1, LH2a/b, and LH3, respectively. Differently from 

LH1 and LH2a/b, LH3 also displays glycosyltransferase activity, used to further modify 

collagen performing a specific O-linked conjugation of galactose to hydroxylysines (GalT 

activity), followed by conjugation of glucose to galactosyl-5-hydroxylysines (GlcT 

activity), using Mn2+ as cofactor. Here, we presented the crystal 3D structures of full-

length human LH3 in complex with cofactors and donor substrates. The elongated 

homodimeric LH3 architecture shows two distinct catalytic sites: the GT domain at the 

N-terminus and the LH domain at the C-terminus of each monomer, separated by an 

accessory domain. The GT domain displays both galactosyl- and glucosyl transferase 

activities, and it also bears distinguishing features compared to other known 

glycosyltransferases. Various disease-related mutations map in close proximity to the 

catalytic sites altering the stability of LH3 and/or its normal enzymatic activity. Further, 

we used structure-based mutagenesis to investigate the broad cooperative network of 

amino acids in the GT domain. We identified critical “hot spots” leading to selective loss 

of the GalT activity without affecting the GlcT activity, providing insights into the 

enzymatic reaction mechanism.We also presented molecular structures of LH3 in 

complex with UDP-sugar analogs, where the sugar moiety is visible for the first time, thus 

providing the first structural templates for LH3 glycosyltransferase inhibitors 

development.  

The main aim of this PhD work  centered around the structural and biochemical 

characterization of human LH3 isoform. The results collected were instrumental also for 

elucidating molecular features associated to other related human LH isoforms. My 

primary activity included the elucidation of the LH3 biochemical features, and the 

inference of their significance at the structural level. Also, I developed and standardized 

the protocols for enzymatic characterization of the enzyme. These methods allowed me 
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to investigate the multiple activities of LH3 in vitro. Collectively, site-directed mutagenesis 

coupled with enzymology studies allowed defining a comprehensive framework of the 

complex LH and GT features of LH3, therefore stimulating further studies aiming at 

elucidating the comprehensive biological significance of this complex multifunctional 

molecule. 
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1.Chapter  

THE COLLAGEN POST-TRANSLATIONAL 
MODIFICATIONS  

 

1.1 INTRODUCTION 

The extracellular matrix (ECM) is a cell-secreted dynamic network of several proteins 

distinct into a “core matrisome” and a “matrisome-associated” ensemble (Naba, 2012). 

The “core matrisome” comprises glycoproteins, fibronectins and laminins, proteoglycans, 

elastin, and collagens. Instead, the matrisome-associated ensemble includes growth 

factors and cytokines, and ECM-remodelling enzymes, such as lysyl oxidases (LOXs) and 

matrix metalloproteinases (MMPs) (Hynes, 2012; McKee, 2019). Depending on the 

organization of the protein ensemble, the ECM can adopt two forms, (i) the interstitial 

matrix, a hydrated porous 3D lattice surrounding cells, or (ii) the basement membrane, a 

thin layer of specialized ECM at the interface between epithelial cells and connective 

tissue. Generally, the collagen fibers and elastin are submerged in a complex network of 

proteoglycans, while fibronectin anchors the matrix to cell by interacting with integrins, 

transmembrane proteins keeping the extracellular space in contact with the cytoplasm of 

the cell. This connection between the extracellular and the intracellular compartments is 

essential for the regulation of cell behaviour. Indeed, the ECM is a reservoir of factors, 

such as epidermal growth factor (EGF), fibroblast growth factor (FGF) and transforming 

growth factor-β (TGFβ) that are released during degradation and remodelling, thus 

inducing the onset of signal transduction cascades. The ECM does not only provide 

structural support defining cell form and distribution, but is also capable of influencing 

cell survival, proliferation, and migration (Engler, 2006; Hadjipanayi, 2009; Hynes, 2009). 

Numerous severe diseases indeed result from alteration of the ECM; therefore, the 

various components are targets for development of therapeutic molecules. 

1.2 THE MOST ABUNDANT PROTEIN IN HUMAN BODY: COLLAGEN 

The major component of the ECM are collagens, representing approximately 30% of the 

total human body dry weight. Collagen are found mostly in connective tissues, such as 

skin, cartilage, tendon, and bone (Bielajew, 2020). So far, 28 different collagen types have 

been described and grouped into subfamilies: (i) fibrillar collagens (I, II, III, V, XI, 

XXIV, XXVII), representing 90% of the total collagen content; (ii) fibril-associated 
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collagens with interrupted triple helices (IX, XII, XIV, XVI, XIX, XX, XXI, XXII); (iii) 

network-forming collagens (IV, VIII, X); (iv) membrane collagens (XIII, XXIII, XXV); 

(v) multiplexins (XV, XVIII) and collagens VI, VII and XXVIII (Ricard-Blum, 2011). 

Several molecular isoforms exist as result of splicing events, specific for each tissue and 

developmental stage, increasing the wide structural and functional diversity across the 

collagen superfamily. 

1.2.1 Collagen structure 

Despite the remarkable diversity in molecular and supramolecular organization, tissue 

distribution and function, collagens show common features. In general, collagens are 

synthesized as procollagen precursors constituted by a central large continuous triple 

helix bordered by N- and C-terminal extensions called the N- and C-telopeptides, 

respectively. Also, two additional sequences typically constituting globular elements flank 

the telopeptides. The N- and the C-propeptides are enriched in cysteine residues. In 

collagen I and III, these propeptides are usually removed during the process of 

maturation into tropocollagen. In other collagen types, namely collagen V and XI, the N-

propeptide is instead maintained even in the mature molecule where it sterically limits 

lateral molecule addition in the extracellular space, influencing heterotypic fibril growth 

(Ricard-Blum, 2005). 

The mature collagen consists in the assembly of left-handed α-chains into homo- or 

heterotrimers (Sharma, 2017), which are in turn supercoiled with a right-handed twist 

(Beck, 1998). Chain trimerization is favoured by close packing and hydrogen bonding, 

resulting in a triple-helical structure which is a unique feature proper of collagens that can 

range from most of their structure (96% for collagen I) to less than 10% (collagen XII). 

The α-chains are constituted by (Z-X-Y)n repeating pattern, where glycine residues (Gly) 

are always in the Z position, buried inside the triple-helix, and any variation leads to 

severe forms of osteogenesis imperfecta (OI), with the exception of nonfibrillar collagens 

where the Gly-X-Y pattern is often interrupted (Brodsky, 2008). Conversely, any amino 

acid can be found in positions X and Y, however proline (Pro) and hydroxyproline (HyP) 

occupies quite often these two solvent exposed positions respectively, stabilizing the 

triple-helix. Out of 400 combinations, only 25 triplets are found at a frequency greater 

than 1%, the reason is that the presence of certain residue either in X or Y position is 

energetically favoured, for example, phenylalanine (Phe), leucine (Leu), and glutamate 

(Glu) are preferentially in the X position, while arginine (Arg) and lysine (Lys) are 

commonly in the Y position. Indeed, the stability of the triple-helix depends on the 

triplets and the resulting network of intra- and interchain interactions (Ramshaw, 1998; 

Persikov, 2000). 
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1.2.2 Collagen biosynthesis 

Collagen biosynthesis is an intricate and tightly regulated process. It starts in the rough 

endoplasmic reticulum (rER), where synthesizing ribosomes translocate single 

procollagen α-chains into the luminal region. Here, the unfolded procollagen chains are 

subjected to several post-translational modifications. As first, proline and lysine residues 

are hydroxylated to hydroxyproline (HyP) and hydroxylysine (HyK). Most of these 

modifications take place while the procollagen chains are growing on the ribosomes and 

continue after the release of the complete procollagen chains, until formation of the 

triple-helical folding prevents any further hydroxylation. HyK residues serve as sites for 

additional modifications: specific collagen glycosyltransferases, in the ER and the Golgi 

apparatus, perform O-linked galactosylation of HyK and subsequent glucosylation, 

producing galactosyl-hydroxylysines (Gal-HyK) and glucosyl-galactosyl-hydroxylysines 

(Glc-Gal-Hyk), the most peculiar and conserved collagen mono- and disaccharide 

(Gjaltema, 2017; Salo & Myllyharju 2020).  

Once modified, the pro-alpha chains have to assemble. The recognition and association 

of the three pro-α-chains occur at variable regions called chain recognition sequences 

(CRS) (Lees, 1997) present in the C-propeptide (COLF1). CRS are the nucleus for triple-

helix folding which proceed in a “zipper-like” fashion, along the helical region, toward 

the N-propeptide (Engel, 1991; Bourish, 2012). This process requires the interplay of 

several molecular chaperones. Heath shock protein 47, for example, binds to Gly–X–Arg 

repeats within triple-helical procollagen in the ER, preventing its local unfolding or 

aggregation, and accelerating triple-helix formation (Ishida, 2011; Oecal, 2016; Ito, 2019). 

Protein disulfide isomerase (PDI) is another chaperone taking part to this process. PDI 

associates independently with the C-propeptide of monomeric procollagen chains and 

catalyses the formation of intra- and interchain disulfide bonds, thus prompting the 

assembly of trimeric molecules (Wilson, 1998). One of the rate-limiting steps of collagen 

folding is the cis-trans isomerization of peptide bonds, which is catalysed by peptidyl-

prolyl cis-trans isomerases (PPIase). Among collagen PPIases there are FK506-binding 

protein 22 (FKBP22, encoded by FKBP14), FK506 binding protein 65 (FKBP65, 

encoded by FKBP10) and cyclophilin B (CypB, encoded by PPIB). FKBP22 acts after 

proline-4-hydroxylation, while FKBP65 interacts both with unfolded α-chains and triple-

helical collagen (Ishikawa, 2008 and 2014), preventing premature association of 

procollagen chains, as well as aggregation of triple-helical collagen molecules. Instead, 

CypB might accelerate the initiation of triple-helix assembly by assisting the folding of the 

C-propeptides (Pyott, 2011). 

The triple-helical procollagen molecules are semiflexible and can be incorporated into 

COP-II vesicles, then can traffic from the ER to the Golgi apparatus, for final 

modifications. The misfolded molecules are retro-translocated back to the ER inside 
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COP-I vesicles, whereas the properly folded molecules are incorporated into secretory 

vesicles and directed to the plasma membrane (McCaughey, 2019; Malhotra, 2015).  

Upon secretion in the extracellular space, the propeptides are cleaved by procollagen N-

proteinases, belonging to the A Disintegrin And Metalloproteinase with 

Thrombospondin motifs (ADAMTs) (Bekhouche, 2015), and the procollagen C-

proteinase, also termed Bone Morphogenetic Protein-1 (BMP-1) (Vadon-Le Goff, 2015). 

The proteolytically processed collagen molecules become the substrate of lysyl oxidases 

(LOXs), a family of enzymes that perform oxidative deamination of ε-group of Lys and 

HyK residues present in the telopeptides. The resulting aldehydes react with residues 

from nearby collagen molecules establishing interchain cross-links (Vallet, 2018; 

Yamauchi, 2019). Finally, the cross-linked collagen molecules spontaneously assemble 

and accumulate into supramolecular structures in the ECM where can accomplish to their 

functional roles (for review, Sorushanova, 2019). 

In summary, collagen biosynthesis requires a large number of PTMs, many of them being 

unique to these complex multimeric macromolecules. Collagen PTMs occur primarily 

inside the cells, where the characteristic triple-helix folds, but continue also outside the 

cell, allowing the formation of supramolecular structures such as fibrils and mesh 

networks. The intracellular modifications comprise hydroxylation of proline and lysine 

residues, and subsequent glycosylation of the latter. The extracellular modifications result 

in the conversion of procollagen into tropocollagen, pivotal for the maintenance of ECM 

properties and homeostasis are the oxidation of lysyl and hydroxylysyl residues and the 

subsequent formation of interchain cross-linking.  

1.3 COLLAGEN PROLYL HYDROXYLATION 

Collagen consists of repeating (Gly-Xaa-Yaa)n sequences, the most frequent is the Gly-

Pro-HyP, where HyP corresponds to hydroxyproline. Hydroxylation of proline residues 

occurs exclusively on individual unfolded procollagen α-chains and it is essential for the 

proper assembly and stabilization of the collagen triple helical structure. Proline residues 

can be hydroxylated either on their C3 or C4 by collagen prolyl-3-hydroxylases (C-P3Hs) 

and collagen prolyl-4-hydroxylases, respectively, producing 3-hydroxyproline (3-HyP) and 

4-hydroxyproline (4-HyP) (Gjaltema, 2016). The 4-hydroxylation of proline is the most 

common modification in collagen, and it enhances the thermal stability of the triple-helix 

through the formation of water-mediated hydrogen bonds. Instead, 3-HyP is a rare amino 

acid, with an occurrence of two residues per α-chain in collagen types I and II, between 

three to six residues per α-chain of collagen types V and XI, and over 10 residues per α-

chain of collagen type IV (Pokidysheva, 2014). The role of 3-Hyp is still unclear. Based 

on its position in the collagen chain, 3-Hyp might be involved in the formation of short-

range hydrogen bonding between triple-helices, having a role in supramolecular 
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assemblies. (Hudson & Eyre, 2013). Furthermore, 4- and 3-HyP may constitute the 

binding sites for several proteins, such as integrins, important for the maintenance of 

collagen and ECM homeostasis. Absence of hydroxylated prolines results in the 

disruption of interaction interfaces and subsequently in diverse pathological conditions, 

thus highlighting the importance of such collagen modifications (Rappu, 2019). 

1.3.1 Collagen prolyl 4-hydroxylases 

Collagen prolyl 4-hydroxylases (C-P4Hs) are multi-domain ER-resident proteins. In 

humans, they are α2β2-tetramers of about 240 kDa and are distinguished by their α 

subunit into type I [α(I)2β2], type II [α(II)2β2] and type III [α(III)2β2]. The β subunit is 

identical in all the isoenzymes, it is a protein disulfide isomerase (PDI) domain necessary 

to keep soluble the α subunits, preventing their aggregation, and is responsible for the 

retention of the entire tetramer in the rER through its KDEL retention sequence 

(Myllyharju, 2003). C-P4H-I is the main form in most cell types and tissues, while C-

P4H-II is the major form in osteoblasts, chondrocytes, endothelial and epithelial cells. 

The critical functions are present on the α subunits, each divided into three domains: the 

N domain, whose function is still unknown; the middle peptide-substrate-binding (PSB) 

domain; the C-terminal catalytic domain (CAT) responsible for proline hydroxylation. 

According to crystallographic structures, the PSB domain is constituted by 100 amino 

acids organized into 5 helices, folded in two tetratricopeptide (TRP) repeats and an extra 

solvating helix (Pekkala, 2004). Small variations in the amino acidic sequence can impact 

on the responsiveness to inhibitors, for example the Poly-(L)-proline has a more powerful 

inhibitory effect on C-P4H-I but C-P4H-II, due to the replacement of Ile82 and Tyr223, 

in C-P4H-I, by a Glu and Gln, in C-P4H-II. Also, sequence variations are responsible of 

differences in substrate affinity. Indeed, type I P4H has higher affinity for (GPP)n 

sequences than type II, which prefers GPxP sequences. By the way, it has been shown 

that P4Hs have higher affinity for longer peptides, affinity that decreases after 

hydroxylation occurs, contributing to the release of the product and preventing 

sequestration on the enzymes. The CAT domain presents conserved features that 

classified P4Hs into the superfamily of 2-oxoglutarate and iron dependent dioxygenases 

(2OGDD). Indeed, the CAT domain is characterized by a double-stranded β-helix core 

fold termed “jelly-roll” and by a His-Asp-His triad coordinating an Fe2+ atom (Hieta, 

2003; Anantharajan, 2013; Murthy, 2018). The enzyme requires Fe2+, 2-oxoglutarate (2-

OG), molecular oxygen and a reducing agent (preferably ascorbate). During catalysis, the 

2-OG is stoichiometrically decarboxylated producing carbon dioxide (CO2) and succinate, 

that incorporates one atom belonging to oxygen, as side products. The other oxygen 

atom is incorporated into the hydroxyl group transferred on proline C-4. The Fe2+ 

undergoes oxidation in Fe3+, thus ascorbate is needed to return the Fe3+ into the initial 

reduced state (Tuderman, 1997; Myllylä, 1997). 
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Figure 1-1 Collagen prolyl-4-hydroxylases. a) Schematic representation of the reaction catalyzed by 

P4Hs. b) Rapresentation of the tetrameric α2β2 organization of P4H enzymes (adapted from 

Anantharajan et al. (2013)). The α subunit is divided into the N-terminal domain, the peptide 

binding domain (PSB) and the catalytic domain (CAT) which interacts with the β subunit. 

According to the crystallographic structure (PDB 4BT8), the N-terminal domain is constituted by 

four α helices (α1-4) and the α1 (red) is involved in the homodimerization between two α subunits. 

The N-terminal domain is connected by a linker (green) to the PSB domain, which is formed by five 

α helices (pink) organized into two TRP sequences. The (Pro)9 peptide binds to the α9, α10 and α11 

of the PSB domain (not shown in figure, see PDB 4BTB and Koski et al. 2017). 
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1.3.2 Collagen prolyl 3-hydroxylases 

P3Hs catalyse transfer of the hydroxyl group on C-3 of Pro residue in position Xaa of the 

Gly-X-HyP triplet, where 4-hydroxylation of the Y proline seems to be a compulsory 

requirement. P3Hs are members of the leprecan family, in human there are three 

isoforms, namely P3H1, P3H2 and P3H3 (encoded by LEPRE1, LEPREL1 and 

LEPREL2, respectively). P3Hs belong to the 2-OGDDs, maintaining the conserved 

features of the catalytic domain, and also have a P4Hα domain at the C-terminal region 

(Jarnum, 2004). The fourth member of the leprecan family is P3H4, also known as 

Synaptonemal complex protein SC65, which possess the PBS domain but lacks the 

catalytic residues, being an inactive prolyl-3-hydroxylase (Gruenwald, 2014). The first 

isolated P3H is P3H1, initially identified as leprecan (leucine and proline-enriched 

proteoglycan) or Gros1 (growth suppressor 1). P3H1 is a prolyl-3-hydroxylase involved in 

modification of fibrillar collagens, precisely collagen I, and localizes in tendon, cartilage, 

and skin (Vranka, 2004). Furthermore, P3H1 is part of an ER-complex together with 

cyclophilin B (CypB) and cartilage-associated protein (CRTAP), the fifth member of the 

leprecan family sharing 55% sequence identity with P3H4. In vivo, the trimeric complex is 

essential for the hydroxylation of collagen I Pro986 and Pro707 residues (Pokidysheva, 

2013), and mutations affecting the expression of these three proteins result in severe or 

lethal autosomal recessive osteogenesis imperfecta (OI) (Cabral, 2007). P3H1 shares 40% 

sequence identity with P3H2. Both isoforms possess four TRP domains involved in 

protein-protein interactions, a central leucine-zipper domain, and a C-terminal KDEL 

sequence needed for retention in the ER. Despite the similarity with P3H1, P3H2 

hydroxylates efficiently collagen IV and is highly expressed in tissues rich of basement 

membranes (Tiainen, 2008). Mutations in LEPREL1 are associated with ocular 

abnormalities due to the disruption of basement membranes, enriched in collagen IV, 

present in eye structures such as the lens capsule and the retina. A single point mutant 

produces a completely inactive P3H2 and is associated with high myopia (Mordechai, 

2011). Recent studies on P3H3 and P3H4 revealed that the two proteins work in complex 

with LH1 and potentially CypB in the ER, regulating LH1 activity on collagen (Heard and 

Besio, 2016). Indeed, it has been seen that P3H3-null mice have under-hydroxylated 

collagen lysines and cross-linking deficiency (Hudson, 2017). 

1.4 COLLAGEN LYSYL HYDROXYLATION 

Collagen-specific lysine modifications occur in the endoplasmic reticulum at the very 

initial stages of biosynthesis when the triple helix is still not folded. Alterations of this 

process generate a sort of “domino effect” resulting in untreatable developmental 

conditions. Most of the alterations cause overexpression or misfunctioning of enzymes 

belonging to lysyl hydroxylase family. 
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As prolyl hydroxylases (PHs), lysyl hydroxylases (LHs) are ER-resident Fe2+, 2-OG-

dependent dioxygenases catalysing the conversion of procollagen lysine into 5-

hydroxylysine (HyK) residues (LH activity). The newly generated HyK residues are the 

main sites for collagen glycosylation and cross-linking.  

The LH reaction, reported in Figure 1-2, requires 2-OG, Fe2+, molecular oxygen (O2) and 

ascorbate. 2-OG is needed both as cofactor and cosubstrate, being decarboxylated into 

succinate and carbon dioxide (CO2). The Fe2+ is the metallic cofactor, that reacts with the 

O2. One molecule of oxygen is incorporated into succinate, the other forms a Fe3+-

superoxo intermediate which reacts with the acceptor substrate, lysine, and is transferred 

as a hydroxyl group, finally producing the HyK. The ascorbate is the reducing cofactor 

needed to regenerate the Fe2+ and allow another reaction cycle. LHs can also catalyse the 

uncoupled reaction, meaning the decarboxylation of 2-OG in absence of the acceptor 

substrate (Yamauchi, 2012; Gjaltema, 2017; Scietti and Forneris, 2020). 

Hydroxylation occurs on lysine at Y position in collagenous Gly-X-Lys triplets; however, 

not all lysines are modified, and the extent of hydroxylation varies among collagen types, 

and even across the same collagen molecule. The origin of such variability is still unclear, 

although an explanation might be found in differences among LH enzymes. In humans, 

three different genes PLOD1, PLOD2 and PLOD3 encode for distinct isoenzymes, LH1, 

LH2 and LH3 respectively, sharing about 70% amino acid sequence identity (Yamauchi, 

2012; Gjaltema, 2017; Scietti and Forneris, 2020). Besides the high similarity, the three 

enzymes act on different portions of the procollagen molecule: LH1 and LH3 modifies 

lysines in the triple-helical region, whereas LH2 is the only one capable of hydroxylating 

the telopeptidyl lysines (Takaluoma, 2007). There is no strict requirement for the amino 

acids flanking the Gly-X-Lys triplet, however in vitro studies on collagen-like peptides 

show a more efficient hydroxylation for certain peptides compared to others, for 

example, a positively-charged amino acid in proximity of the lysine increases the binding 

affinity of the LHs for the peptide, promoting enzyme catalysis (Risteli, 2004).  

Figure 1-2 Procollagen Lysine Hydroxylation 
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1.4.1 Lysyl hydroxylase 1 

LH1 performs preferentially lysyl hydroxylation of the triple helical domains of both 

collagens I and III. Over 30 mutations in PLOD1 gene (mainly duplications) result in 

Ehlers-Danlos syndrome type VIA (EDS VIA), a rare inherited connective tissue 

disorder characterized by skin hyperextensibility and fragility, joint hypermobility, severe 

muscle hypotonia and progressive kyphoscoliosis (Rohrbach, 2011).  At molecular level, 

the mechanical instability of tissues found in EDS VIA patients is due to deficiency of 

LH1, causing collagen under hydroxylation and glycosylation, and thus affecting cross-

linking patterns (Walker, 2000; Giunta, 2005). The LH1 enzymatic activity is modulated 

by a “local molecular ensemble” composed of P3H3, SC65 (P3H4) and CypB (Ishikawa, 

2019). P3H3 interacts with SC65, forming a stable complex which can bind to LH1 

(Heard and Besio, 2016). P3h3- and Sc65-null mice, showing EDS-like phenotypes, 

displayed under hydroxylation of specific lysine residues, such as Lys87 and Lys930 in the 

triple helical region of α1 and α2 chains of collagen I, involved in intermolecular cross-

links. The absence of such modifications enables the formation of intrachain cross-links 

which alters the physiological pattern, resulting in diseased condition. Indeed, 

P3H3/SC65/LH1 complex is pivotal for the hydroxylation at cross-linking sites 

(Hudson, 2017). Instead, the LH1 activity at the remaining lysine residues is most likely 

influenced by CypB. The complex is not well characterized; however, mutations 

disrupting the interaction between CypB and LH1 lead to under modification of collagen 

I, again resulting in EDS phenotypes (Ishikawa, 2012). At the moment, structural 

information is unfortunately incomplete, although essential for better understanding on 

how and why these proteins associate together. Finally, it is important to underline also 

that LH enzymes reside in the ER although lacking any retention sequence, thus the 

interaction of LH1 with P3H3, SC65 and CypB, which possess such feature (KDEL or 

REEL sequences), might have important implications in LH1 ER-retention.  

1.4.2 Lysyl hydroxylase 2 

PLOD2 gene, encoding for LH2, is subjected to alternative splicing events, accordingly 

the exclusion or the inclusion of exon 13 A produces respectively a short variant LH2a 

(737 amino acids) and a longer variant LH2b (758 amino acids), both lacking ER-

retention sequences. LH2b is ubiquitously expressed in several tissues and display 

hydroxylase activity within telopeptide sequences Gly-X-Lys-, –Ala-X-Lys- and –Ser-X-

Lys-, being the only known telopeptidyl lysine hydroxylase (t-LH). LH2 activity generates 

tissue-specific hydroxylation sites involved in formation of stable collagen cross-links, 

which are necessary for correct collagen deposition and fibrillogenesis in the ECM (Guo, 

2017). 

LH1 activity is modulated by formation of ER-chaperone complexes, the same happens 

for LH2. FKBP65, encoded by FKBP10, is a peptidyl prolyl cis-trans isomerase (PPIase) 
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reported to prevent collagen aggregation during synthesis and to assist LH2 

homodimerization in the ER. The binding outcome differs depending on the involved 

isoform: the FKBP65-LH2a complex does form but fails in binding and hydroxylation of 

the collagen telopeptides, whereas the FKBP65-LH2b result in normal t-LH activity. 

Homozygous mutations in FKBP10 and PLOD2, resulting in depletion of FKBP65 and 

LH2, cause respectively Bruck syndrome type I and II, rare autosomal recessive disorders 

both characterized by fractures and congenital contractures with pterygia, severe limb 

deformity and progressive scoliosis. Such clinical outcome is the result of abnormal bone 

collagen I, which present under hydroxylation in the telopeptides and a subsequent 

reduction of pyridinoline cross-links. To note is that triple-helix hydroxylation pattern is 

not altered, meaning that FKBP65 does not bind to other LH isoforms and is a specific 

positive regulator of LH2b (Gjaltema, 2016; Chen, 2017). In presence of procollagen type 

I, actually the FKBP65-LH2 binomial forms a bigger complex together with Hsp47 and 

BiP (immunoglobulin heavy-chain-binding protein). BiP directly binds to Hsp47 and 

increases the affinity of the complex for collagen. Hsp47 instead negatively regulates LH2 

activity possibly inducing its monomerization. Thus, the competition between FKBP65 

and Hsp47 modulates LH2 and ensures the correct hydroxylation of telopeptidyl lysines. 

Further, defective Hsp47 results in abnormal trafficking of the complex into collagen I 

containing-vesicles, suggesting a possible mechanism for retention of LH2 into the ER, as 

occurs for the homologous LH1 (Duran, 2017). 

Overexpression of PLOD2 correlates with tissue fibrosis and metastatic cancer 

progression, and can be induced by TGF-β1, hypoxia-inducible factor 1α (HIF-1α), 

profibrotic cytokines and microRNA (van der Slot, 2005; Eisinger-Mathason, 2013; 

Gilkes, 2013; Kurozumi, 2016). In several solid tumours, high levels of LH2 function as a 

regulatory switch, primarily controlling the relative abundance of different collagen cross-

links and pushing it toward a unique type. As result, altered collagen accumulates and 

subsequent stiffening of the matrix promotes fibrosis and tumour cell invasion (van der 

Slot, 2004; Chen, 2015). Moreover, LH2 overexpression leads to unusual active enzyme 

secretion in the extracellular space: in lung cancer tissues, LH2 colocalizes in the tumour 

stroma with collagen I which is accessible and can be further modified by LH2, without 

interfering with lysyl oxidases activity (Chen, 2016). In head-and-neck squamous cell 

carcinomas (SCCs), LH2 exerts its pro-metastatic role specifically interacting with and 

modifying integrin β1. The hydroxylation of three lysine residues in the sequence 

AFNKGEKK has a stabilizing effect on integrin β1, which can be efficiently recruited at 

the plasma membrane. Here, it dimerizes with integrins α1, α2 and α11 and mediates cell 

adhesion to collagen molecules (Popov, 2011). The LH2-integrin β1 interaction has been 

observed in SCCs, but also in lung adenocarcinoma, breast adenocarcinoma and in HeLa 

cells. The result of such interaction is the accelerated cell motility, promoting cells 

invasion and metastatic spreading of the tumour (Ueki, 2020). 
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1.4.3 Lysyl hydroxylase 3 

Considered as the ancestor of the LH family, LH3 has unique features and differs from 

LH1 and LH2 for its enzymatic activity, substrate specificity and cellular localization. 

LH3 is a multifunctional enzyme displaying LH activity and two additional collagen 

glycosyltransferase (GT) activities: starting from UDP-sugar in presence of Mn2+ 

cofactor, LH3 catalyses the O-linked conjugation of galactose to hydroxylysines (GalT 

activity), and the subsequent transfer of glucose to galactosyl-5-hydroxylysines (GlcT 

activity). The three different activities have been detected in vitro (Heikkinen, 2000), and 

LH3 was found to preferentially modify collagen types II, IV and V. The in vivo activities 

of LH3 have been investigated using genetically modified mouse lines. Mutations 

affecting only the LH activity result in normally developed mice, bearing defective 

basement membranes, and altered collagen fibrils in skin and lung (Ruotsalainen, 2006). 

Instead, reduction of LH3 GlcT activity leads to abnormal collagen IV deposition, 

causing developmental disorders, ECM abnormalities and defects in collagen and 

cytoskeleton arrangement (Risteli, 2009). Likewise, total depletion of LH3 is 

embryonically lethal in mice, due to prevented collagen IV secretion and subsequent 

intracellular accumulation (Ruotsalainen, 2006). Interestingly, the GT activity of LH3 

enables secretion of the ER-retained enzyme. Indeed, LH3 has been found correctly 

folded and active also in the Golgi apparatus and in the extracellular space (Salo, 2006; 

Banushi, 2016). Treatment with Brefeldin A (inhibitor of COP-I coated trans-Golgi 

vesicles) identified two pathways for LH3 secretion in cells: the first one is a non-

conventional route which bypasses the Golgi-apparatus, resulting in extracellular LH3 

bearing non-processed high-mannose N-glycosylation; the second route instead requires 

the formation of a Golgi complex (Wang, 2012). The LH3 interacts with VIPAR and 

VPS33B that, in association with RAB10 and RAB25, drive LH3 trafficking trough the 

trans-Golgi network and delivery into collagen IV carriers (CIVC), also regulating the 

post-Golgi sorting process. VPS33B and VIPAR deficiency reduces LH3-dependent 

post-translational modification of collagen IV, followed by abnormal deposition of the 

ECM (Banushi, 2016). Overall, these findings open questions about possible 

compartmentalisation of the LH3 activities, suggesting different and relevant roles in the 

Golgi-apparatus and in extracellular space that must be further investigated.  

Our group determined the first three-dimensional structure of full-length human LH3 in 

complex with cofactors (PDB 6fxr; the paper by Scietti et al. 2018 is presented in Chapter 

3 of this thesis). This result constitutes a major milestone: combining the structural 

knowledge with biochemical information, it was possible to generate homology models 

for LH1 and LH2 and map several disease-causing mutations in all isoforms. Most of the 

mutations have been manually annotated and collected on SiMPLOD (the Structurally-

integrated database for Mutations of PLOD genes) and can be visualized directly on the 

available molecular models (Scietti and Campioni, 2019). Thus, mutagenesis studies 
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became more accurate in the identification of mutation sites and in the interpretation of 

resulting phenotypes (an example is reported in Chiapparino et al. 2019, Chapter 4 of this 

thesis). Further, the structural information can advance the research of efficient 

therapeutic drugs for the treatment of severe connective tissue disorders, fibrosis and 

solid tumors, speeding up the rational design of structure-based candidate molecules able 

to bind LH enzymes and to modulate their activity. 

1.5 THE FORMATION OF COLLAGEN CROSS-LINKS  

Once in the extracellular space, the secreted collagen molecules have to assemble in 

supramolecular structures, as example collagen type I molecules are packed in parallel and 

staggered with one another at a distance of 67 nm, forming fibrils. As already mentioned, 

the fibrillogenesis requires the formation of stable collagen cross-links in a process tightly 

regulated in terms of initiation and maturation (Yamauchi, 2012).  

1.5.1 Lysyl oxidases 

Collagen cross-linking is initiated by the cleavage of collagen N- and C- propeptides that 

makes collagen molecules accessible to enzyme of the lysyl oxidase family. This family is 

composed by five members, lysyl oxidase (LOX) and four LOX-like enzymes 

(LOXL1,2,3 and 4). Evolutionary studies grouped LOX and LOXL1, sharing a common 

ancestor, into a different subgroup compared to LOXL2, LOXL3 and LOXL4 enzymes 

(Grau-Bovè, 2015). LOX and LOXL1 are secreted as quiescent enzymes that become 

active upon proteolytic cleavage. The pro-LOX is a 50 kDa protein and is cleaved by 

BMP1 proteinase, the same involved in processing of procollagen C-propeptide 

(Trackman, 2016). The pro-LOX cleavage releases a 20 kDa propeptide (LOX-PP) 

identified as “matricryptin”, a bioactive ECM fragment that accomplishes several 

functions different from the parental molecule. Indeed, LOX-PP is essential for the 

secretion of pro-LOX and favours the cleavage by interacting with fibronectin on the cell 

surface. Also, LOX-PP exhibits several functions in several compartments, and it has 

been found in the nucleus of different cell types where it modulates cell signalling 

pathways and cell proliferation (Vallet, 2018). Mature LOX is a 30 kDa enzyme whose 

activity is located in the C-terminal domain, conserved among all the family members. 

The catalytic domain presents a histidine-rich Cu2+ binding site and a lysine tyrosyl 

quinone (LTQ) cofactor. The latter is the result of an autocatalytic Cu2+-assisted oxidative 

deamination of a covalent bound Lys of the active site, and on turn LTQ provides the 

carbonyl moiety needed for catalysis (Lucero, 2006; Yamauchi, 2012). Lysyl oxidases are 

characterized by highly variable N-terminal regions and also LOXL2-3-4 bear scavenger 

receptor cysteine-rich (SRCR) sequences. This variability contributes to the establishment 

of substrate specificity and a diversification of lysyl oxidase roles. Indeed, LOX oxidizes 

in vivo Lys residues embedded in Asp-Glu-Lys-Ser sequences in the N-telopeptide region 

of collagen I, whereas LOXL2 prefers collagen IV, and LOXL1 works on elastin 
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(Trackman, 2016). LOX and LOXLs are copper-dependent enzymes and catalyse the 

oxidative deamination of the primary amine in Lys and HyK residues, forming 

respectively allysine and hydroxyallysine, and ammonia and hydrogen peroxide as side 

products. Lysyl oxidases do not directly form cross-linking, however the introduction of 

the carbonyl group changes the chemical microenvironment around the modified 

residues, as the newly formed aldehydes are highly reactive, they can spontaneously 

condense with Lys and HyK residues. 

Cancer cells overexpress LOX and LOXLs via HIF-1α or TGF-β induction, as for LH2, 

resulting in increased proliferative rates and invasiveness. Inhibition of LOX reduces the 

metastatic potential of tumour cells, preventing pro-inflammatory signal transduction 

pathways leading to fibrosis, fibronectin expression and formation of altered collagen 

cross-links. For these reasons, LOXs are target for the development of drugs effective in 

cancer therapy (Nishioka,2012). 

1.5.2 The LOX-mediated collagen cross-linking 

Primary interchain cross-links form between telopeptidyl aldehydic residues and 

Lys/HyK in the helical region of two different neighbouring collagen molecules. Further 

maturation leads to formation of di-, tri- and tetravalent cross-links, tying together two or 

three different collagen molecules. An intrachain cross-link can occur as result of 

condensation of two aldehydic residues, forming an aldol condensation product (ACP), 

that can mature into an intrachain cross-link. Two different cross-linking pathways can be 

identified: lysine aldehyde collagen cross-linking (LCC) and the hydroxylysine aldehyde 

collagen cross-linking (HLCC) pathways. LCCs are prominent in soft tissues, whereas 

HLCCs are more stable and provide tensile strength in skeletal tissues, in which are 

predominantly found (Yamauchi & Sricolpech, 2012; Yamauchi, 2017).The fine balance 

between LCCs and HLCCs is essential for proper ECM deposition, ensuring tissue 

integrity and homeostasis, thus their formation is tightly controlled at level of quantity, 

quality, and maturation. Quality and quantity of cross-links mostly depend on the activity 

of LH2b, generating the telopeptidyl HyK, and lysyl oxidase, converting the HyK into the 

respective reactive aldehyde. As previously discussed, alterations of LH2b and LOXs 

activities cause perturbation of this equilibrium inducing reduction or increase in HLCCs 

content. HLCCs firstly form from the condensation of telopeptidyl hydroxyallysine with 

the ε-amino group of juxtaposed triple-helical Lys or HyK forming divalent cross-link 

(deH-HLNL and deH-DHLNL) that can mature into a trivalent one: pyridinoline (Pyr), 

deoxypyridinoline (d-Pyr), pyrrole (Prl) and deoxy-pyrrole (d-Prl) cross-links. The 

maturation process is mostly regulated by glycosylation of HyK residues (it will be 

discussed much in detail in the following dedicated chapters). Divalent cross-links are 

mono or diglycosylated, whereas in trivalent cross-links such modification is nearly 

absent, with the exception of few Gal-HyK residues. Probably the bulky structure and the 
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hydrophilic character of such modification would impair the correct formation of such 

cross-links impeding proper packing of collagen molecules (Terajima, 2014). Dramatic 

rearrangements of the ECM are the consequence of LCCs to HLCCs switch, leading to 

severe fibrosis, a proper characteristic of malignant and highly metastatic solid tumours. 

Figure 1-3 Scheme of LOX reaction mechanism. 1) The ε-amino group of Lys or HyK (RCH2NH2) 
condenses with a carbonyl of the enzyme bound LTQ cofactor. 2) A general base (His 303 in LOX) 
abstracts an electron from C-6 of Lys or HyK, and the transfer of 2 electrons on LTQ generates a 
reduced peptidyl lysyl tyrosyl aminoquinol. 3) The hydrolysis of the imine linkage releases the 
(hydroxy)allysine that will be involved in cross-linking, LCC when R = Lys or HLCC when R = 
HyK. 4) The molecular oxygen abstracts 2 electrons from the aminoquinol, releasing hydroxgen 
peroxide. 5) Then, hydrolysis of the quinoneimine regenerates the LTQ cofactor with production of 
ammonia. (Adapted from Oldfield, 2018) 
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1.6 ECM MODULATION AS A HALLMARK OF CANCER 

A tumour is any abnormal proliferation of cells, which starts with a single cell 

accumulating genetic mutations altering its normal behaviour. Thus, the genetic instability 

of the progenitor cell triggers the abnormal proliferation leading to primary tumour 

growth. Tumour aggressiveness depends on its ability to migrate: a tumour is defined 

“benign” as long as it remains confined to its original location. When the primary tumour 

becomes capable of invading the surrounding normal tissues and spreads into the body, 

exploiting the circulatory and lymphatic system, it becomes “malignant”. A tumour is a 

complex assembly composed of a microenvironment surrounding a stroma. The tumour 

microenvironment (TME) comprises the tumour stroma itself, a network of blood 

vessels, secreted factors, and extracellular matrix proteins. The tumour stroma consists of 

a heterogeneous population of cancer cells interacting with a variety of resident and 

infiltrating host cells, such as immune inflammatory cells, pericytes, endothelial cells and 

cancer-associated fibroblasts (CAFs). 

The acquisition of specific capabilities, defined as the hallmarks of cancer, drives 

development, growth and spreading of malignancy. Cancer cells must sustain highly 

proliferative states, evading from growth suppression and cell death mechanisms and 

acquire replicative immortality. Further, the hallmarks comprise also the capabilities of 

induce angiogenesis and initiate invasion into the neighbouring tissues, the dysregulation 

of normal cellular metabolic circuits, the avoidance of immune destruction and the 

development of chronic inflammation (Hanahan, 2011). Establishment of such hallmarks 

can be reached through different mechanisms depending on cancer type and 

developmental stages; however, it always implies the alteration of normal cell metabolic 

and signalling pathways. In several cancers, such as pancreatic, gastric, and colorectal 

cancers, the normal TGF-β signalling pathway is redirected from suppressing cell division 

toward the induction of epithelial-to-mesenchymal transition (EMT), promoting cell 

proliferation and migration. The EMT is a feature proper of highly malignant tumour 

cells, in such transition the epithelial cells lose their polarity and cell-to-cell adhesion 

capability and acquire motility proper of mesenchymal cells. TGF-β is frequently 

produced in high amounts by stromal cells and can stimulate angiogenesis and suppress 

the immune system (Colak, 2017). Growing tumors need the continuous formation of 

new vasculature in order to receive oxygen and nutrients necessary for their growth and 

survival. The angiogenesis inducers are the vascular endothelial growth factor (VEGF) 

and fibroblast growing factor (FGF), and their expression is upregulated by tumour cells 

in presence of hypoxia and fibrosis (Hori, 2017). 
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The hallmarks of cancer are directly influenced by the deposition and remodelling of a 

‘provisional matrix’, which contributes to define tumour histopathology and behaviour, 

mostly affecting its progression, promoting cellular transformation and metastasis. The 

cancer-associated ECM also deregulates behaviour of stromal cells, facilitates 

angiogenesis induction, and stimulates a persistent state of chronic inflammation (Pickup, 

2014).  

Tumor cells secrete their own ECM components, in particular CAFs which promote 

intratumoral fibrosis. CAFs are tissue resident fibroblasts and/or stellate cells (pancreas 

and liver) undergoing an activation process upon stimulation by tumour-derived stimuli, 

namely signalling molecules such as TGF-β, lysophosphatidic acid, FGF and interleukin-1 

(IL-1) and 6 (IL-6). CAFs are divided into (i) secretory and immune modulatory CAFs, 

producing cytokines essential for the recruitment of macrophages and promoting an 

immune suppressive effect, (ii) contractile and matrix producing (Park, 2020). CAFs are 

able to synthesise and remodel the ECM modulating the expression of matrix 

remodelling enzymes, in particular by overexpressing LH2b and/or LOX enzymes CAFs 

secrete a heavily cross-linked collagen, presenting a higher amount of HLCCs, which 

deposits on a thick scaffold of fibronectin molecules. The resulting microenvironment is 

characterized by hypoxia, and releases of factors such as HIF-1α in turn stimulates the 

overexpression of LH2b and LOX, thus generating a self-sustaining positive feedback 

loop perpetuating a fibrotic state (Yamauchi, 2018). Progressive stiffening of the matrix 

creates compressive remodelling of the TME that alters the fluid transport, thus CAFs 

necessarily produce VEGF and FGF to induce angiogenesis and promote irroration of 

the thick ECM, but also the migration of invasive cancer cells (Ferruzzi, 2019). Cancer 

cells acquire motility capabilities through the EMT, then the formation of invadopodia 

directs the invasion of the surrounding tissues through the release of metalloproteases 

(MMPs), which perform the remodelling of matrix scaffolding proteins. In lung and 

breast cancers, through a continuous process of synthesis and degradation, collagen type I 

accumulates and forms “highways” along which invasive cancer cells can adhere and 

migrate (Eisinger-Mathason, 2013; Gilkes, 2013; Pankova, 2016; Park, 2020). Such 

collagen highways prompt the dissemination of cancer cells inside the body, and favour 

formation of tumour metastasis at secondary sites. 

1.6.1 Therapeutic strategies for cancer treatment 

Desmoplasia characterizes aggressive solid tumors and is predictive of poor prognosis. 

Overexpression of LH2b and LOX correlates with tumour progression and 

metastatisation. Inhibition of collagen cross-linking reduces ECM stiffening and prevents 

tumour metastasis, therefore a potential strategy to arrest malignancy is the development 

of therapeutic molecules targeting matrix remodelling enzymes. Minoxidil has been used 

to inhibit LH2 in preclinical models. Minoxidil regulates PLOD2 transcription, thus 
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lowering lysyl hydroxylation in telopeptides also results in normal HLCC/LCC ratio and 

deposition of normally cross-linked collagen molecules (Zuurmond, 2005). LH2 might 

also be targeted indirectly with tacrolimus, an inhibitor of FKBP65. In this context, the 

3D structure of LH3 can also serve to generate a reliable model of LH2b, which can be 

used for developing selective inhibitors targeting the LH catalytic domain or its 

dimerization interface. The pro-metastatic effect of collagen modifying enzymes could be 

counteracted also by targeting HIF-1α and TGF-β1, which promotes migratory, invasive, 

and adhesive capabilities of cancer cells via induction of EMT. Indeed, inhibitors of 

hypoxia effectively block metastatisation of breast and lung cancers (Wong, 2012), 

whereas neutralizing antibodies and ligand traps have been developed in order to revert 

the effect of altered TGF-β1 signalling and suppress tumour cell proliferation (Akhurst, 

2017). 
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ABSTRACT 

Collagen is a major constituent of the extracellular matrix (ECM) that confers 

fundamental mechanical properties to tissues. To allow proper folding in triple-helices 

and organization in quaternary super-structures, collagen molecules require essential post-

translational modifications (PTMs), including hydroxylation of proline and lysine 

residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific 

hydroxylysine residues on procollagen alpha chains, catalyzed by specialized 

glycosyltransferase enzymes. The resulting glucosyl-galactosyl-hydroxylysine (Glc-Gal-

Hyl) is one of the simplest glycosylation patterns found in nature and is essential for 

collagen and ECM homeostasis. Although the biochemical reactions leading to formation 

of Glc-Gal-Hyl have been widely studied, several key biological questions about the 

possible functions of this essential PTM are still missing. In addition, the lack of three-

dimensional structures of the enzymes catalyzing these reactions hinders our 

understanding of the catalytic mechanisms producing this modification, as well as the 

impact of genetic mutations causing severe connective tissue pathologies. In this mini-

review, we summarize the current knowledge on the biochemical features of the enzymes 

involved in the production of collagen glycosylations and the current state-of-the-art 

methods for the identification of this key PTM. 

2.1 INTRODUCTION 

Collagen O-linked glycosylations are unique post-translational modifications (PTM) 

occurring at early stages of the complex biosynthesis sequence leading to mature 

extracellular collagen molecules. Starting from hydroxylation of lysine residues in the 

endoplasmic reticulum (ER), the subsequent 5-hydroxylysine (Hyl) glycosylations 

generate a very simple and extremely conserved PTM (1-3). Its distribution and 

abundance on collagen molecules strongly depend on collagen amino acid sequence, 

tissue type and organism developmental stage (4-8). Micro- (i.e. the extent of 

glycosylation at a specific collagen site) and macro-heterogeneities (i.e. the glycosylation 

occupancy at different collagen sites) characterize different collagen types and seem to be 

responsible for the diverse structural organizations and functions in the extracellular 

matrix (ECM). Fibrillar collagens such as type I and II display only few glycosylated 

residues (5,9,10), whereas mesh-type collagens (such as type IV) are glycosylated much 

more extensively (11). However, the molecular paths leading to Hyl PTMs are still 

missing fundamental pieces, thus preventing a comprehensive understanding of the 

mechanisms and the exact biological impact of collagen glycosylation. Furthermore, how, 

where and why specific lysines are differentially modified in the diverse collagen types are 

far to be understood and rationalized, although increasing efforts have been made to 

efficiently map these PTMs (11). Novel mass-spectrometry based approaches started to 

shed light on such heterogeneity (see the “glycosyltransferase activity assays” paragraph), 
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but a complete description of the requirements to obtain different glycosylation types on 

specific collagen sequences is still missing.  

2.2 A SIMPLE, ESSENTIAL AND CONSERVED PTM 

Firstly described by Spiro late in the 60’s, the -(1,2)-glucosyl--(1,O)-galactosyl-5-

hydroxylysine (Glc-Gal-Hyl) is one of the simplest existing glycosylation type in the 

animal protein world, and is uniquely occurring on collagen and collagen-like proteins 

(12,13). This PTM is extremely conserved from sponges to humans (14-18). The 

biological functions of collagen glycans remained unclear for long time, but critical roles 

in collagen triple-helix stabilization and organization of collagen superstructure in the 

ECM are emerging (1,2,19,20). Although not completely understood, Hyl glycosylation 

was reported to be involved in several step of collagen biosynthesis, such as control of 

secretion, cross-linking, and fibrillogenesis. These processes are crucial to maintain the 

ECM homeostasis by modulating cell-ECM adhesion events and integrin-mediated 

signaling (1,19,21). Accumulating evidence supporting the fundamental role of Hyl 

glycosylation in ECM structural organization are provided by the diverse disease 

conditions arising from alterations in the specific collagen glycosylation patterns (see also 

box i). In this respect, genetic mutations affecting the enzymatic machineries associated to 

collagen glycosylations lead to severe connective tissue disorders (22-27). Similarly, 

overexpression and mislocalization of these enzymes in the tumor microenvironment 

have been described to enhance the metastatic progression of many solid tumors (28-30). 

2.3 THE PATH TO GLC-GAL-HYL 

Complete collagen glycosylation requires three distinct and consecutive enzymatic 

activities on collagen lysine residues: after generation of Hyl in the ER by means of 

procollagen lysyl hydroxylases (LH enzymes, encoded by the procollagen-lysine 2-

oxoglutarate 5-dioxygenase (PLOD) genes), 5-hydroxylysyl galactosyltransferases (Gal-T, 

EC 2.4.1.50) form a β-glycosidic bond between a galactose molecule and the 5-hydroxyl 

group of Hyl, thus generating β-(1,O)-galactosyl-5-hydroxylysine (Gal-Hyl); subsequent 

galactosyl-5-hydroxylysyl glucosyltransferases (Glc-T, EC 2.4.1.66) form a α-glycosidic 

bond between a glucose molecule and Gal-Hyl, yielding the final Glc-Gal-Hyl PTM 

pattern (see also box ii). The two enzymatic glycosyltransferase reactions rely on the use of 

activated nucleotide sugars in the form of UDP-conjugates (UDP-α-D-galactose and 

UDP-α-D-glucose) as donor substrates. Considering that UDP-glycan are almost 

exclusively alpha anomers, the catalytic mechanisms and therefore the glycosyltrasferases 

involved in the process can be defined as “inverting” when the anomeric carbon 

configuration changes from α to β and “retaining” when the configuration of the 

anomeric carbon is maintained (2, 31-33) (Figure 1). These enzymes use a bivalent metal 

ion (typically Mn2+) to allow proper coordination of the phosphate moiety of the UDP-

glycan within the active site. The metal ion is in turn coordinated by two aspartate 
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residues, which are usually part of extremely conserved Asp-X-Asp (DXD) motifs. In 

humans, two main glycosyltransferase enzyme families are responsible for the 

biosynthesis of Glc-Gal-Hyl: the galactosyltransferases belonging to the COLGALT gene 

family and the multifunctional lysyl hydroxylase-glucosyltransferases from the PLOD 

gene family.  

 

2.4 THE BIOCHEMISTRY OF UDP-SUGAR TRANSFER 

Glycosyltransferase enzymes using nucleoside conjugated sugars are termed Leloir 

glycosyltransferases, and are structurally characterized either by the presence of a GT-A 

or a GT-B fold (32,34,35). The GT-A glycosyltransferases comprises two close β/α/β 

Rossmann domains and the conserved DXD motif, coordinating a divalent metal ion 

cofactor, usually Mg2+ or Mn2+ (32,35). GT-B glycosyltransferases are membrane 

associated. They possess two β/α/β Rossmann domains facing each other and are 

independent from metallic cofactors (36). Depending on the reaction mechanism, both 

Figure 2-1 Biochemistry of collagen hydroxylysine glycosylation. Collagen hydroxylysine residues 
are modified through the subsequent addition or removal of sugar moieties. The first reaction is a 
galactosyltransferase (Gal-T) reaction, performed by GLT25D1/2 and, possibly, also by 
multifunctional LH3. Using UDP-galactose as donor substrate, the galactose is transferred by the 
enzyme through an inverting mechanism to the hydroxylysine 5-OH group, forming a β-(1,O)-
glycosidic bond. A subsequent glycosyltransferase (Glc-T) reaction is carried out by LH3 through a 
retaining reaction. The glucose is transferred from the donor UDP-glucose to the β-(1,O)-galactosyl-
5-hydroxylysine residue, forming a α-(1,2)-glycosidic bond. The resulting α-(1,2)-glucosyl-β-(1,O)-
galactosyl-5-hydroxylysine may also undergo further processing: an α-glucosidase, PGGHG, can use 
a water molecule to hydrolyze the glucose moiety, thus yielding back the β-(1,O)-galactosyl-5-
hydroxylysine residue. 
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GT-A and GT-B glycosyltransferases can be inverting or retaining GTs. The inverting 

reaction proceeds via a single displacement SN2 mechanism mediated by a catalytic base, 

with the concomitant nucleophilic attack by the acceptor substrate and leaving group 

departure (32,37). The retaining reaction implicates the maintenance of the same 

configuration at the anomeric carbon. In this context, two mechanisms are possible: the 

first one implies a double displacement involving the formation of a covalent glycan-

enzyme intermediate, whereas the second one consists in a SNi mechanism (termed 

‘internal return’) in which the attacking catalytic nucleophile and the leaving group 

departure occur from the same face (38,39). 

2.5 HUMAN COLLAGEN GALACTOSYLTRANSFERASES  

The transfer of a galactose moiety on the hydroxyl group of Hyl is catalyzed through an 

inverting reaction by two specialized procollagen hydroxylysine galactosyltransferases 

(Figure 1): GLT25D1 (Procollagen galactosyltransferase 1, UniProt Q8NBJ5) and 

GLT25D2 (Procollagen galactosyltransferase 2, UniProt Q8IYK4), respectively encoded 

by COLGALT1 and COLGALT2 genes. Their Gal-T-associated activity is essential: 

COLGALT1 knock-out is embryonically lethal in mouse (40), whereas knock-down 

experiments consistently resulted in pronounced reduction of collagen galactosylation in 

cell-based experiments (20,41) and in murine models (40), underlying the importance of 

these enzymes in ECM homeostasis and suggesting that the in vivo LH3 Gal-T activity 

(see next paragraph) may not be sufficient for normal collagen glycosylation. Genetic 

mutations on COLGALT genes in mouse and humans cause cerebral small vessel disease, 

a hereditary syndrome characterized by small arteries and capillaries in the brain. The 

pathogenic mutations Leu151Arg, Ala154Pro, and Glu366Arg produce a highly unstable 

and inactive GLT25D1, causing a strong decrease in Gal-T activity and leading to 

abnormal intracellular accumulation of collagen type IV (42). A loss of function mutation 

(Trp130Arg) of GLT25D1 was also reported in mice and zebrafish models with 

musculoskeletal defects associated with impaired secretion of collagen IV (43). 

GLT25D1 is ubiquitously found in human tissues especially in placenta, heart, lung, and 

spleen, whereas GLT25D2 is present at low levels in brain and skeletal muscle tissues 

(44). The two enzymes share 55% sequence identity with the cell-adhesion protein 

CerCAM (or CEECAM1, UniProt Q5T4B2), which is expressed in secretory tissues 

(salivary gland, pancreas, placenta) and in the nervous system, and is involved in 

leukocyte transmigration across the blood-brain barrier (44,45). CerCAM does not display 

galactosyltransferase activity either in vitro or in vivo and is considered as the inactive 

GLT25D3 member (44). Human GLT25D1 and GLT25D2 are not active on isolated 

Hyl residues and require collagenous peptides of at least 500-600 Da as acceptor 

substrates. However, no preference for specific collagen sequences has been reported, 

resulting in enzymatic activity on several Hyl residues found in different collagen types 
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(44). In addition, GLT25D1 can exert its Gal-T activity also on collagenous domain of 

mannan-binding lectin (MBL) and high molecular weight (HMW) adiponectin. 

Introduction of glycan moieties stabilizes MBL and HMW adiponectin and facilitates 

their secretion into the extracellular space. Intracellular accumulation of these two 

proteins has been observed as consequence of GLT25D1 depletion (44,46,47).  

Biochemical analyses coupled with site-directed mutagenesis and domain-swapping 

experiments enabled the identification of GLT25D1/2 residues essential for catalysis. 

GLT25D1 presents three DXD motifs: one at the N-terminus (Asp166-Asp168, using 

GLT25D1 numbering) fully conserved among the three human GLT25D isoforms, and 

two at the C-terminus (Asp461-Asp463 and Asp585-Asp587), not conserved in 

GLT25D2 and CerCAM. The first two motifs appear critical for enzymatic activity, 

whereas the third one is dispensable (48). However, no unambiguous identification of the 

metal ion binding site is currently available, as well as accurate structural description of 

the GLT25D molecular architecture. Based on amino acid sequence comparisons, 

GLT25D1 and GLT25D2 appear to share features with other glycosyltransferases. The 

N-terminal domain is similar to the GT2 domain of heparin synthase, chondroitin 

synthase and hyaluronan synthase (46,48). Interestingly, GLT25D1 also shares about 30% 

sequence identity with the N-terminal glycosyltransferase domain of the multifunctional 

procollagen lysyl hydroxylase and glycosyltransferase LH3 (46,49), which displays also 

collagen Gal-T activity in vitro (see next paragraphs). The C-terminal domain of GLT25D 

enzymes is instead closely related to the inverting-type Leloir GT25 family (2,41,44).  

An intriguing aspect of GLT25D biology is the possible association of these enzymes 

with multifunctional lysyl hydroxylases-glycosyltransferases. Colocalization studies indeed 

identified GLT25D1 and LH3 in the ER, suggesting the possibility of a complex 

multiprotein enzyme system capable of LH, Gal-T and Glc-T activity (46,47). However, 

numerous reports detected LH3 (and also related isoforms (28)) in the Golgi apparatus 

and in the extracellular space (50-52), whereas GLT25D enzymes were always observed 

as resident in the ER. This is consistent with the presence of specific ER retention 

sequences for GLT25D enzymes but not for LH, supporting the possibility of transient 

LH-GLT25D multiprotein systems in the ER during specific stages of collagen 

biosynthesis and subsequent additional enzymatic modifications by LH within other 

cellular compartments. 

2.6 COLLAGEN GLUCOSYLTRANSFERASES 

Gal-Hyl undergo subsequent Glc-T reaction, yielding Glc-Gal-Hyl. In this case, 

differently from the previous Gal-T reaction, the acceptor substrate is a glycan moiety 

(Gal) instead of a modified amino acid (Hyl). Opposite to the Gal-T reaction, in the Glc-

T step the glucose moiety is transferred from the UDP--Glc donor to the Gal-Hyl 
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acceptor in alpha configuration, thus through a retaining reaction mechanism. Since the 

initial identification of the Glc-Gal-Hyl pattern, several enzymes residing in the ER have 

been proposed as putative collagen glucosyltransferases (2). However, accumulating 

evidence assigned this role exclusively to the multifunctional procollagen lysil hydroxylase 

and glycosyltransferase LH3 (UniProt O60568) (49). Encoded by the PLOD3 gene, LH3 

is a multifunctional enzyme displaying procollagen glycosyltransferase activities in its N-

terminal (GT) domain, and lysyl hydroxylase activity in the C-terminal (LH) domain 

(53,54). The function(s) of LH3 are essential for life, as total knock-out of the PLOD3 

gene is embryonically lethal in mice, due to prevented collagen IV secretion and 

subsequent intracellular accumulation (55,56). Published reports suggest the ability of 

LH3 to carry out the complete conversion of collagen Lys residues to Glc-Gal-Hyl in vitro 

(54,57,58), but the measured catalytic efficiency of the two reactions is strongly different, 

with the Glc-T activity being at least one order of magnitude more efficient than the Gal-

T activity in the same experimental conditions (54). The observed coexistence of both 

Gal-T and Glc-T activities within the same LH3 catalytic site is controversial and so far 

not supported by clear evidence of biological significance: whilst the functional 

implications of LH3 as collagen glucosyltransferase were extensively verified (51,59-62), 

no LH3 Gal-T activity has ever been observed in vivo. Mouse studies showed that 

mutations exclusively affecting the lysyl hydroxylase activity domains of the enzyme result 

in normally developed animals without dramatic alterations in tissue morphology, but 

with reduced thickness of the epidermal basal lamina (55,56). On the other hand, several 

reports indicate that the LH3 Glc-T activity is essential for correct secretion and assembly 

and extracellular deposition of several collagen types, ranging from the fibrillar type I (62) 

to the highly glycosylated type IV and VI (63), with strong implications in correct 

formation of cytoskeletal structures, basement membranes and ECM architectures 

(55,64,65). 

The recent determination of the three-dimensional structures of full-length human LH3 

enabled precise identification of the amino acids involved in Mn2+ binding and 

stabilization of the UDP moiety of the donor substrate (54). Nevertheless, due to the lack 

of electron density for the sugar moiety of UDP-glycan in the catalytic site, none of the 

obtained structures allowed to uniquely characterize the residues responsible for catalysis. 

A surprising, unexpected structural feature is the presence of a second well defined 

glycosyltransferase domain in the quaternary structure of the enzyme that is not 

competent for any enzyme’s catalytic activity (54). The striking sequence similarity 

between this noncatalytic “accessory” domain and classic glycosyltransferases constituted 

one of the major difficulties associated to the understanding of the localization and 

mechanisms of LH3 glycosyltransferase activities (53,57,66). Conversely, the structure of 

the only functional LH3 glycosyltransferase domain only partially resembles Leloir-type 

GT-A. The classical Rossmann fold architecture is decorated with long, flexible loops 

characterized by unique amino acid sequences and incorporates a non-canonical DXXD 
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motif (Asp112-Asp115) coordinating the Mn2+ ion (54). Structure-guided site-directed 

mutagenesis encompassing the unique features of the glycosyltransferase domain 

confirmed the critical features associated to the two aspartate residues responsible for 

Mn2+ coordination, and for two aromatic residues (Trp75 and Tyr 114) critical for 

trapping the uridine moiety of the UDP-glycan donor substrate within the catalytic site 

(54). Additional mutants probing the precise significance of the numerous “hot spots” 

localized within the LH3 glycosyltransferase catalytic site are currently subject of 

thorough investigation (67). 

Combined with molecular structure knowledge, mouse and zebrafish models helped in 

the rationalization of the increasing reports describing mutations occurring on the human 

PLOD3 gene affecting its glycosyltransferase domain, causing severe connective disorders 

such as recessive Dystrophic Epidermolysis Bullosa and Stickler syndrome 

(26,27,64,68,69). 

2.7 THE NEED FOR A COLLAGEN GLUCOSIDASE 

In late 1970s, a glucose hydrolase, different from the well-known α-glucosidase, has been 

characterized in rat kidney, spleen, and chick embryos (70-72). Encoded by 

PGGHG/ATHL1 gene, the protein-glucosylgalactosyl-hydroxylysine glucosidase 

(PGGHG) is also conserved in humans (73). Intriguingly, PGGHG activity was not 

observed in jawless vertebrates (73), possibly tracing a distinctive role for this enzyme in 

jaw and joint formation.  

PGGHG is specific for the Glc-Gal-Hyl of collagens and catalyzes the hydrolytic removal 

of the glucose moiety, yielding Gal-Hyl residues. The exact PGGHG contribution to 

collagen homeostasis is still unclear: the critical roles of this enzyme in Glc-Gal-Hyl 

catabolism are well established, however the mechanisms underlying the balance between 

glucosyltransferase and glucosidase activities in vivo, as well as the selectivity of the 

enzyme for different collagen types and glycosylated Hyl residues within protein 

sequences demand an in-depth investigation. Although in absence of structural data, 

biochemical characterizations provided insight into its substrate recognition properties 

and catalytic mechanism: the positive charge of the ε-amino group in Hyl seems to guide 

substrate recognition through a conserved aspartate residue (Asp301 in human 

PGGHG), directly interacting with the glucose moiety. Judged by the strong product 

inhibition observed in vitro and in vivo (74,75), the interaction of the enzyme with glucose 

plays fundamental roles in catalysis. Two additional glutamate residues (Glu430 and 

Glu574) were identified respectively as the catalytic acid and base, judged by their critical 

impact on glucose hydrolysis (73).  
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2.8 GLYCOSYLTRANSFERASE ACTIVITY ASSAYS 

Assaying glycosyltransferase activity has always been challenging (76). This biochemical 

complexity extends much further in presence of non-conventional acceptor substrates 

such as the large multimeric collagen molecules (Figure 2). Historically, the most 

common method to probe these enzymatic functions focused on monitoring the transfer 

of radiolabeled sugars from donor to acceptor molecules (77,78). However, these 

experimental approaches are becoming less and less frequently used, as they rely on 

cumbersome extraction processes to recover and measure glycosylated products, and 

require management of radioactive materials and waste. In this respect, various assays not 

relying on radiolabeled reagents have been developed, but most of these have been 

tailored to specific glycosyltransferase reactions, requiring modified sugar-nucleotide 

donors and additional separation steps (76). Highly sensitive immunological methods, 

based on very specific antibodies or lectins, offer the advantage of a precise identification 

of the glycosyltransferase reaction products. Immunostaining has long been used for 

product detection with glycolipid or glycoprotein acceptors (79). The downside of 

immunological assays is the lack of readiness for quantitative enzyme kinetics 

experiments. Furthermore, the availability of specific antibodies or acceptor conjugates 

can also be problematic. In this respect, it should be noted that these assays were not 

broadly applied to collagen glycosyltransferases, due to the intrinsic difficulties in 

detecting Hyl glycosylations at specific collagen sites within the highly repeated amino 

acid sequences (16). With the advent of cheap and efficient fluorescent labeling 

techniques, HPLC and capillary electrophoresis (CE) coupled to detection of 

fluorescence increasingly became the standard approach to separate and quantitate 

glycosyltransferase reaction products (80,81). These methods couple high resolution and 

sensitivity to reliable product identification; the main limitation is the requirement of a 

fluorescent label in the acceptor substrate at sites that do not interfere with enzyme 

catalysis.  

Mass spectrometry (MS) has always been a powerful analytical method to analyze collagen 

PTMs, and the advances in this field enabled the characterization of collagen 

glycosylations and their micro- and macro-heterogeneity. Classical MS analytical 

procedures require enzymatic degradation of collagens followed by separation of the 

resulting peptides by liquid chromatography (LC) and MS analysis of fractions by matrix-

assisted laser desorption-ionization time-of-flight (MALDI-TOF) coupled to peptide 

sequencing through automated Edman degradation and tandem mass spectrometry 

(MS/MS) (4). A novel method for glycopeptide preparation requiring hydrazide chemistry 

and galactose oxidase was developed by Taga et al. (82). The hydrazide-based method 

coupled with LC-electrospray ionization (ESI)-MS/MS can allow the simultaneous 

detection of substrates and reaction products even in presence of complex, highly 

repeated amino acid sequences. The ESI technique enabled the identification of several 
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and unreported O-glycosylation sites in bovine type I and type II collagens, 

discriminating between Gal-Hyl and Glc-Gal-Hyl residues (83). A major challenge in 

collagen analysis is the characterization of post-translational heterogeneities in collagen 

peptide mixtures. In this respect, the development of high-resolution mass spectrometry 

(HRMS) instrumentation offered swiftness, ease of use, and reliable enabling the 

characterization of the glycosylation patterns. HRMS key to success in recent 

investigations describing the features of distinct glycosylation sites on specific collagen 

sequences (84-86). Among the others, Basak et al. implemented HRMS with 

fragmentation methods and bioinformatics workflows providing a comprehensive 

characterization of glycosylation and hydroxylation heterogeneity of collagen IV from 

mouse and human basement membranes with about 80% sequence coverage (11). 

Similarly, Merl-Pham et al. performed a quantitative proteomic analysis of collagen PTMs 

in crude ECM preparation, yielding a comprehensive map of lysine modifications for 15 

collagen types and quantifying the micro-heterogeneity of the O-glycosylation sites on 

human collagen I alpha-1 chain (8).  

A viable alternative to probe glycosyltransferase activity is the usage of a universal indirect 

assay based on detection of reaction byproducts (e.g., free UDP) using either fluorescence 

(87,88) or luminescence (54). Similar methods were developed and successfully applied 

for the characterization of the lysyl hydroxylase enzymatic activity (54,89,90). Application 

of these methods to collagen glycosyltransferases requires enzyme coupling to convert 

the UDP to a detectable product, such as ATP or phosphate, or coupling with UDP-

glucose dehydrogenase to produce NADH before conversion to a fluorescent resazurin 

by diaphorase (76). However, these coupled assays are inherently prone to false positives 

from compound interference with the coupling enzymes, and thus require many 

additional tests for counter-screening. In addition, numerous glycosyltransferases 

(including LH3) systematically display processing of donor substrates uncoupled to 

transfer of the glycan moiety to the acceptor molecule (54). In this respect, a general 

recommendation in using indirect assays involves combining the quantitation of 

enzymatic activity with direct evidence of substrate formation, e.g., through radio- or 

immune- labeling, or using mass spectrometry.  
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2.9 CONCLUSIONS  

Collagen lysine modifications are highly conserved PTMs essential for the correct 

biogenesis of collagen and deposition of ECM. To date, some pieces of this intricate 

picture are missing. Although collagen lysine hydroxylations and glycosylations have been 

extensively studied and characterized, it is still unclear how and why certain types of 

collagen display most of their lysine residues in the glycosylated form (e.g. collagen IV 

and VI), whereas in other collagen types only a small percentage of lysines is subject to 

hydroxylation. Macro-heterogeneities depend on the specificity of the glycosyltransferase 

machineries operating only on certain Hyl residues and thus arise as a consequence of a 

temporally- and spatially-controlled process, as observed in zebrafish (91). Likewise, they 

can also correlate with differential expression of collagen glycosyltransferase enzymes 

depending on tissue type and developmental stage. It is important to underline that not 

Figure 2-2 Detection methods for the measurement of collagen lysine post-translational 
modifications. Collagen lysines are modified by hydroxylation and subsequent glycosylations. The 
first hydroxylase reaction produces hydroxylysine (Hyl) and succinate as side product. Hyl is then 
glycosylated by consecutive addition of galactose and glucose moieties, yielding galactosyl-
hydroxylysine (Gal-Hyl) and glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl). Both glycosylation 
reactions produce UDP as side product. Detection of collagen lysine post-translational 
modifications may require either direct or indirect assays, exploiting the formation of main or side 
products, respectively. Direct assays (upper blue box) include well-established classical 
biochemical methods, such as immunolabelling and radiolabelling of main products, but also 
advanced methods based on coupling of liquid chromatography with hybrid ion trap and/or 
quadrupole time-of-flight mass spectrometry (LC/MS, LC/QTOF MS). Indirect assays (lower 
yellow box) are based on the enzymatic conversion of side products, succinate and UDP, into 
detectable reagents such as ATP (suitable for luminescence-based assays), resazurin or phosphates 
(suitable for chromogenic and fluorescence-based assays). Created with BioRender.com. 

https://biorender.com/
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all Hyl residues are found fully glycosylated, as numerous Gal-Hyl residues can be found 

(4) contributing to increase the overall micro-heterogeneity of collagen PTM. This in turn 

poses the question about the mechanism by which Gal-Hyl is produced, and the possible 

biological roles exerted by different mono- and disaccharide glycosylations. For example, 

the presence of O-linked monosaccharide or disaccharide units covalently attached to Hyl 

impacts on the formation and the extent of extracellular collagen cross-links. Fully 

glycosylated Glc-Gal-Hyl are often found at the bridge of divalent cross-links, whereas 

the less bulky Gal-Hyl modifications are more frequently present at mature trivalent 

cross-links (1). Furthermore, reduction of the Gal-T activity accelerates collagen cross-

link maturation, resulting in an increased number of trivalent cross-links (20). Alterations 

in glycosylation and cross-linking patterns affect the final shape and diameter of collagen 

fibrils. Ultimately, the distribution of mono- and disaccharide units on collagen molecules 

impacts on the supramolecular architecture of the ECM and its associated protein-protein 

interaction networks, modulating tissue homeostasis and, in case of malfunctions, leading 

to severe connective tissue disorders (22-27,83,92). Taken together, the available data on 

distribution and abundance of different collagen glycosylations support the intriguing 

hypothesis of a precise biological significance for each Lys, Hyl, Gal-Hyl and Glc-Gal-Hyl 

pattern found across different collagen molecules during different stages of tissue 

development (see also box iii). In this respect, the enzymatic activities of lysyl hydroxylases, 

hydroxylysine glycosyltransferases and PGGHG may contribute as a whole to the 

establishment and maintenance of a possible “collagen code”, indispensable to prevent 

the dramatic impact displayed by altered macro- and micro-heterogeneities on tissue 

homeostasis (93). The accurate description of the fine details underlying catalytic 

selectivity and specificity mechanisms of these enzymes will provide crucial insights to 

fully unravel the outstanding complexity associated to this relatively simple, yet unique 

and essential PTM pattern.  

2.10 PERSPECTIVES  

i) Collagen hydroxylysine glycosylations are essential PTMs that allow proper collagen 

weaving and correct ECM deposition. Alterations in the biosynthesis of this relatively 

simple pattern lead to collagen aberrations resulting in severe connective tissue disorders.  

ii) Collagen glycosylation is established by the synergistic activity of lysyl hydroxylases, 

GLT25D1/2, LH3 and PGGHG. The combined action of these enzymes results in the 

production of a specific micro- and macro-heterogeneity which are peculiar for each 

collagen type. 

iii) Synergistic approaches combining comprehensive MS-based glycosylation analyses of 

collagen molecules, molecular structure investigations and biochemical characterization of 

the enzymatic players involved in the process are key to understanding the biological 

significance of such heterogeneity. 
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i. Altered collagen glycosylation patterns cause a variety of developmental connective tissue disorders. Combined 

with the recent identification of alterations in Hyl patterns in metastatic progression of solid tumors, the need for 

accurate investigations on collagen glycosyltransferase mechanisms becomes evident, for fundamental knowledge and 

for possible development of advanced therapeutic strategies. In this respect, a fascinating observation relates to the 

identification of multifunctional LH3 in the ER, in the Golgi apparatus. and the extracellular space, where this 

enzyme can further process collagen molecules. The precise functional role associated to LH3 trafficking has still to 

be unveiled, but its involvement in developmental diseases suggests critical importance for this process, likely 

associated to LH3 Glc-T activity and its possible regulation due to collagen processing in different cell 

compartments. 

ii. Glc-Gal-Hyl is a simple, yet unique glycosylation pattern essential for proper collagen weaving in the ECM. The 

Glc-Gal-Hyl biosynthesis is catalyzed by two families of glycosyltransferases which make use of activated UDP-

glycan to transfer sugars: the GLT25D Gal-T and the LH3 multifunctional Glc-T. These enzymes use different 

donor substrates and catalytic mechanisms: in the inverting Gal-T reaction the substrate is the hydroxyl group of 

specific collagen lysines generating Gal-Hyl, whereas in the retaining Glc-T reaction the glucose is transferred to the 

acceptor substrate (galactose), yielding Glc-Gal-Hyl. The enzymes involved in the Glc-Gal-Hyl biosynthesis have 

peculiar structural features that resemble only partially other known glycosyltransferases. Multifunctional LH3 has 

also been reported capable of Gal-T activity in vitro, however the lack of in vivo evidence, the possibility of synergies 

and colocalization with GLT25D1, and the requirement of a different biochemical mechanism for catalysis renders 

this observation quite controversial. 

iii. New proteomics-based analyses are progressively unveiling details about the specificity of collagen Hyl 

glycosylation, however how and why only specific lysines are processed is still unclear. The simultaneous 

identification of Lys, Hyl, Gal-Hyl and Glc-Gal-Hyl residues in collagen sequences in different regions of the 

molecule may represent a hallmark of PTM specificity. Alternatively, the possible lack of PTM specificity might 

suggest the possibility of a fine balance between the action of hydroxylases, glycosyltrasferases (GLT25D1/2, LH3) 

and glucosidases (PGGHG), adding further complexity to the system. Furthermore, the precise structural 

organization of the Glc-Gal moiety with respect to the main collagen triple-helix chain is unknown, as well as its 

precise molecular impact on formation of complex quaternary structures. Our understanding of the enzymatic 

properties of collagen glycosyltransferases and their impact on collagen assembly demands a more comprehensive 

biochemical and structural characterization of LH, GLT and PGGHG enzymes and their complexes with collagen 

substrates and products, to shed light on the differences and similarities driving to their diverse role in Glc-Gal-Hyl 

and Gal-Hyl biosynthesis. 
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activities of LH3 wild-type and mutanted variants. Also, I helped in the expression and 
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ABSTRACT 

Lysyl hydroxylases catalyze hydroxylation of collagen lysines, and sustain essential roles in 
extracellular matrix (ECM) maturation and remodeling. Malfunctions in these enzymes 
cause severe connective tissue disorders. Human lysyl hydroxylase 3 (LH3/PLOD3) 
bears multiple enzymatic activities, as it catalyzes collagen lysine hydroxylation and also 
their subsequent glycosylation. Our understanding of LH3 functions is currently 
hampered by lack of molecular structure information. Here, we present high resolution 
crystal structures of full-length human LH3 in complex with cofactors and donor 
substrates. The elongated homodimeric LH3 architecture shows two distinct catalytic 
sites at the N- and C-terminal boundaries of each monomer, separated by an accessory 
domain. The glycosyltransferase domain displays distinguishing features compared to 
other known glycosyltransferases. Known disease-related mutations map in close 
proximity to the catalytic sites. Collectively, our results provide a structural framework 
characterizing the multiple functions of LH3, and the molecular mechanisms of collagen-
related diseases involving human lysyl hydroxylases. 
 

3.1 INTRODUCTION 

Collagen biosynthesis requires multiple post-translational modifications essential for the 

generation of mature, triple-helical molecules1. Modification of collagen lysines enables 

subsequent glycosylation and formation of extracellular cross-links, leading to fibrillary or 

meshwork superstructures2. Enzymes belonging to the family of collagen lysyl 

hydroxylases (LH or PLOD) catalyze lysine hydroxylation of collagens using Fe2+, 2-

oxoglutarate (2-OG), ascorbate and molecular oxygen3,4. In humans, PLOD genes encode 

for three LH enzyme isoforms sharing >60% amino acid sequence identity: LH1, 

LH2a/b, and LH3, respectively5. Mutations in PLOD genes that reduce or abolish LH 

activity are associated with severe connective tissue diseases including Ehlers-Danlos6 and 

Bruck syndromes7,8. In mouse models, LH3 knock-outs are embrionically lethal9,10. 

Mutations in the PLOD3 gene also result in impaired collagen glycosylation, secretion, 

and basement membrane formation, yielding phenotypes resembling osteogenesis 

imperfecta11. Conversely, PLOD overexpression and upregulated enzymatic activity have 

been linked to fibrosis12, and recently also to hypoxia-induced metastatic spreading of 

solid tumors with poor prognosis13,14,15. 

LH3 is considered the evolutionary ancestor of the LH family: this isoform is the only 

one capable of further processing of hydroxylysines through glycosylation, whereas other 

isoforms might have lost such capability during evolution16. LH3 is therefore a 

multifunctional enzyme capable of converting collagen lysines into 1,2-glucosylgalactosyl-

5-hydroxylysines through three consecutive reactions: hydroxylation of collagen lysines 
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(LH activity), N-linked conjugation of galactose to hydroxylysines (GT activity), and 

conjugation of glucose to galactosyl-5-hydroxylysines (GGT activity)17,18. Biochemical 

data suggest that these different enzymatic activities are localized in distinct 

compartments of the enzyme19, but despite the extensive evidence available, the current 

knowledge of LH enzymes is far from exhaustive. These enzymes are known to act 

together with prolyl hydroxylases, respectively introducing hydroxylations of lysine and 

proline residues on procollagens in the endoplasmic reticulum (ER), prior to the 

formation of triple-helical assemblies20. In line with this, LH enzymes are found as ER-

resident proteins albeit they do not possess specific ER-retention sequences21,22. Reports 

suggest that ER retention could be mediated via interaction with distinct ER-resident 

proteins: LH1 is described to be part of a macromolecular complex with SC65, P3H3 and 

CYPB23; while LH2 forms a complex with HSP47, FKBP65 and BiP24,25; LH3 was found 

colocalizing with collagen galactosyltransferases GLT25D1/226. Multiple reports identify 

LH3 also in the extracellular space and suggest dedicated trafficking mechanisms for its 

secretion27,28,29,30. Abnormalities in LH3 post-Golgi trafficking are associated with 

devastating developmental diseases with phenotypes characterized by immature collagen 

accumulation and lack of its secretion, very similar to those observed in case of enzyme 

malfunctions caused by knock-down or inactivation9,10,11,30,31. Very recently, LH2 

secretion has been reported associated with hypoxia-induced PLOD2 overexpression in 

metastatic tumor microenvironments13,15. Extracellular LHs were reported to be active, 

suggesting implications for ECM stability and remodeling27. These data indicate that 

although lysine modifications are known to occur in the ER prior to collagen triple helical 

formation, secreted variants of LH3 and LH2 can modify collagens in different 

compartments and, possibly, in different folding states32. 

The accumulated knowledge about the precise molecular roles and mechanisms 

associated with LH enzymes has suffered from the lack of molecular structure models 

fundamental to shed light on the complexity and the diversity of this important enzyme 

family. Here, we present the crystal structures of multifunctional full-length human LH3 

in complex with various cofactors and donor substrates. The structures reveal a 

multidomain architecture characterized by two independent catalytic sites devoted to the 

different enzymatic activities and provide a molecular understanding that has implications 

for various disease-related mutations found in LH enzymes. Altogether, our results offer 

new insights into the complex mechanisms of collagen biosynthesis and homeostasis, and 

provide structural templates for the development of targeted therapies for LH-related 

diseases and cancer. 

3.2 METHODS 

3.2.1 Chemicals 

All chemicals were purchased from Sigma-Aldrich unless otherwise specified. 
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3.2.2 DNA constructs 

Human LH3 gene (GenBank accession number BC011674.2) was obtained from Source 

Bioscience. Oligonucleotides containing in-frame 5’-BamHI and 3’-NotI were designed 

and used to sub-clone the LH3 sequence devoid of the N-terminal signal peptide into the 

pUPE.106.08 expression vector, kindly provided by U-protein Express, BV (U-PE, The 

Netherlands) and into the pPuro-DHFR, containing the Streptomyces alboniger 

puromycin resistance gene (isolated from the pPUR plasmid, Clontech) and the mouse 

dihydrofolate reductase cDNA47. Both expression vectors bear N-terminal signal peptide 

followed by a N-terminal 6xHis-tag and a recognition site for Tobacco Etch Virus (TEV) 

protease prior to an in-frame BamHI restriction site, as well as an in-frame stop codon 

after the NotI restriction site. LH3 mutants were generated using the Phusion Site 

Directed Mutagenesis Kit (ThermoFisher Scientific) following manufacturer’s 

instructions. The entire plasmid was amplified using phosphorylated primers. For all 

mutants, the forward primer introduced the mutation of interest (Supplementary table 4). 

All expression plasmids were checked by Sanger sequencing prior to usage. 

3.2.3 Recombinant LH3 expression from stable HeLa cell lines 

The pPuro-DHFR-LH3 construct was transfected into human cervical carcinoma cells 

(HeLa S3, provided by ATCC and further selected for high transfection efficiency by 

Dr.F. Peverali, Consiglio Nazionale delle Ricerche, Pavia) using the Lipofectamine LTX 

reagent (Invitrogen). Cells were not authenticated and not tested for mycoplasma 

contamination. Stably transfected clones, isolated with 1 mg mL−1 puromycin (Invivogen), 

were subjected to step-wise selection with increasing methotrexate concentrations to 

select for cells containing multiple copies of the plasmid. Cells were routinely cultured at 

37 °C in 5% CO2 in high-glucose DMEM supplemented with 10% foetal calf serum 

(Biowest), 1× non-essential amino acids, 2 mM L-glutamine and 1× penicillin-

streptomycin. Clones expressing high yields of PLOD3 were identified by SDS-PAGE 

analysis after imidazole elution from small-scale immobilized metal ion affinity 

purification using Nickel sepharose beads (GE Healthcare). 

3.2.4 Recombinant LH3 expression from transient HEK293 cells 

Recombinant tagged LH3 mutants were produced using suspension cultures of 

HEK293F (Invitrogen) cells. Cells were not authenticated and not tested for mycoplasma 

contamination. Cells were transfected at cell densities of 1 million mL−1 using 3 μg of 

polyethyleneimine (PEI; Polysciences, Germany) for 1 μg of pUPE.106.08-LH3 plasmid 

DNA per mL of cells. Cultures were supplemented with 0.6% Primatone RL 4 h after 

transfection. The cell medium containing secreted LH3 was collected 6 days after 

transfection by centrifugation at 1000 × g for 15 min. 
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3.2.5 Purification of LH3 enzymes 

The LH3-containing medium from either HeLa or HEK293 cell cultures was filtered 

through a syringe 0.2 mm filter. The pH and ionic strength of the filtrated medium were 

adjusted using a concentrated buffer stock to reach a final concentration of 25 mM 4-(2-

hydroxyethyl)−1-piperazineethanesulfonic acid (HEPES)/NaOH, 500 mM NaCl, 30 mM 

imidazole, pH 8.0. LH3 was purified using affinity and size-exclusion chromatography on 

Äkta systems (GE Healthcare). The filtered supernatant was first loaded onto a 20 mL 

His-Prep FF column (GE Healthcare) and eluted using 250 mM imidazole. The eluate 

was then loaded onto a 5 mL HiTrap desalting FF column (GE Healthcare) equilibrated 

in 25 mM HEPES, NaOH, 500 mM NaCl, pH 8.0. The N-terminal histidine-tag was 

cleaved using overnight TEV protease digestion at 4 °C followed by affinity-based 

removal of TEV protease and His-tag using a 5 mL HisTrap FF (GE Healthcare). The 

protein was concentrated to 5 mg mL−1 using 30,000 MWCO Vivaspin Turbo centrifugal 

filters (Sartorius), then loaded onto a Superdex 200 10/300 GL (preparative scale) or 

onto a Superdex 200 5/150 GL (analytical scale) columns (GE Healthcare) equilibrated 

with 25 mM HEPES/NaOH, 200 mM NaCl, pH 8.0. LH3-containing fractions as 

assessed from SDS-PAGE analysis were pooled, concentrated and stored at −80 °C until 

further usage. 

3.2.6 LH3 deglycosylation 

Wild-type LH3 and mutants T672N, L714N, and W148N-L150T were subjected to 

deglycosylation to validate the introduction of an additional glycosylation site through 

mutagenesis. 20 μL protein at 0.15 mg mL−1 were first incubated with 1X Glycoprotein 

Denaturing Buffer (New England BioLabs) and denatured at 95 °C for10 min. 1X 

glycobuffer 2 (New England BioLabs), 1% NP-40, and 0.2 μL (100 Units) of PNGase F 

(New England BioLabs) were added to the reaction mix, which was further incubated for 

2 h at 37 °C. PNGase F-treated and untreated samples were then analyzed using western 

blotting with rabbit anti-LH3 antibody (Proteintech 11027–1-AP) in a 1:1000 ratio 

followed by anti-rabbit HRP-conjugate antibody (Sigma-Aldrich A0545) in a 1:3000 ratio. 

3.2.7 ICP-MS measurements 

To measure the number of tightly bound divalent metal ions 3 mg of LH3 were diluted in 

5 mL 25 mM HEPES, 500 mM NaCl, pH 8.0. Three aliquots of 1 ml each were kept 

overnight with 0.5 mL 65% ultra-pure HNO3 and 0.1 mL 30% w/w H2O2, then diluted 

to 5 mL with Milli-Q water and analyzed by ICP-MS. The measurements of Fe and Mn 

were performed on a Perkin Elmer Mod ELAN DRC-e instrument, following the 

standard procedures suggested by the manufacturer. Quantitative determinations were 

obtained by the external standard calibration with five standards (0, 5, 10, 50, 100, and 

300 µg L−1) daily prepared in the same buffer used for samples preparation, at the same 

dilution and HNO3 concentration. Only Fe was quantified in each replicate solution, with 
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standard deviation of the mean value of 8%, obtaining a molar ratio Fe/LH3 = 1, while 

Mn was present as impurity in the blank and in the samples. 

3.2.8 Crystallization of LH3 

LH3 spherulites were found in nanoliter-dispensed droplets (0.1 μL protein at 

4 mg mL−1 + 0.1 μL reservoirs) using commercial crystallization screens in sitting vapor 

diffusion drop plates. These spherulites were initially optimized by mixing 0.5 μL of 

protein concentrated at 3.5 mg mL−1 and 0.5 μL of reservoir solution composed of 

600 mM sodium formate, 12% poly-glutamic-acid (PGA-LM, Molecular Dimensions), 

100 mM HEPES/NaOH, pH 7.8. These crystals diffracted to a maximum of 5 Å. Crystal 

quality was improved through sequential runs of macro-seeding of LH3 crystals using the 

same crystallization mixture with slight variations in protein concentration. Co-

crystallization experiments were performed by setting up the same seeding conditions, 

and supplementing the protein solution with mixtures of 500 μM FeCl2, 500 μM MnCl2, 

1 mM UDP-galactose, 1 mM UDP-glucose (Supplementary Table 1). Crystals were cryo-

protected with the mother liquor supplemented with 20% glycerol, harvested using 

MicroMounts Loops (Mitegen), flash-cooled and stored in liquid nitrogen prior to data 

acquisition. Heavy atom derivatives were prepared by soaking the LH3 crystals in mother 

liquor conditions containing 1 mM K2HgBr4. Crystals were incubated with the heavy 

atom solution for at least 5 h at 4 °C prior to cryo protection, harvesting and flash-

cooling in liquid nitrogen. 

3.2.9 Diffraction data collection and structure refinement 

Diffraction data from LH3 crystals were collected at various beamlines of the European 

Synchrotron Radiation Facility, Grenoble, France and at the Swiss Light Source, Villigen, 

Switzerland (details in Supplementary Table 1). Single wavelength Anomalous Dispersion 

(SAD) experiments at the Hg edge were performed at the ESRF ID30B beamline, 

whereas high multiplicity long-wavelength native SAD data (57 data sets of 360° from 6 

different crystals) were collected at the SLS X06DA beamline as described elsewhere48. 

The data, which showed strong anisotropy (Supplementary Fig. 3), were processed with 

autoPROC49 including STARANISO50. Statistics are summarized in Suppl. table 1. Hg 

heavy atom sites were identified using SHELXC/D51 with the HKL2MAP GUI52. 

Experimental phasing with the Hg SAD data using SHELXE51 and SHARP53 yielded a 

partial model. Completion of the model could only be achieved by combining the latter 

with high multiplicity native SAD data using the CRANK2 pipeline54 followed by 

iterations of automatic and manual model building using BUCCANEER55 and COOT56. 

Subsequent LH3 structures were determined using the initial LH3 structural model in 

molecular replacement runs with PHASER57. Final 3D models were generated using 

iterations of automatic refinement using PHENIX58 alternated with manual adjustments 

using COOT56. Validation of structure quality was carried out with Molprobity59, the 
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RCSB PDB Validation Server60, and PDB-CARE61. Final refinement statistics are listed in 

Suppl. Table 1. Structural figures were generated using PyMol62. 

3.2.10 SAXS data collection and analysis 

Solution scattering data were collected at ESRF BM29 using a sec−1 frame rate on Pilatus 

1 M detector located at a fixed distance of 2.87 m from the sample, allowing a global q 

range of 0.03–4.5 nm with a wavelength of 0.01 nm. SEC-SAXS experiments were carried 

out using Nexera High Pressure Liquid/Chromatography (HPLC; Shimadzu) system 

connected online to SAXS sample capillary63. For these experiments, 50 μL of LH3 

concentrated at 4 mg mL−1 were injected into a Superdex 200 PC 3.2/300 Increase 

column (GE Healthcare), pre-equilibrated with 25 mM HEPES/NaOH, 200 mM NaCl, 

pH 8.0. For offline batch sample analysis, 50 μL of LH3 at concentrations ranging from 

0.5 to 9 mg mL−1 were injected using the dedicated automatic sample changer available at 

the BM29 beamline64. For SEC-SAXS data, frames corresponding to LH3 protein peak 

were identified, blank subtracted and averaged using CHROMIXS65, whereas batch 

concentration series were analyzed using PRIMUS66. Radii of gyration (Rg), molar mass 

estimates and distance distribution functions P(r) were computed using the ATSAS 

package67 in PRIMUS66. Comparison of experimental SAXS data and 3D models from 

crystal structures was performed using CRYSOL68. A summary of SAXS data collection 

and analysis results is shown in Suppl. Table 3. 

3.2.11 Determination of LH activity using mass spectrometry 

Synthetic collagen peptides were purchased from China peptides. Peptides tested were 

ARGIKGIRGFS, GIKGIKGIKGIK, and IKGIKGIKG sequences. LH3 5 μM was 

incubated with 500 μM FeCl2, 1 mM 2-OG, 2 mM ascorbate and 1 mM peptide substrate. 

Reactions were allowed to proceed for 1 h at 37 °C. In total 20 μL of each sample were 

previously acidified by addition of 1 μL of formic acid (FA) and then analyzed on an LC–

MS system (Thermo Finnigan, USA) consisting of a thermostated column oven Surveyor 

autosampler controlled at 25 °C; a quaternary gradient Surveyor MS pump equipped with 

an UV/vis detector and an Ion Trap (LCQ Advantage Max) mass spectrometer with 

electrospray ionization ion source controlled by Xcalibur software 2.0.7. Peptides were 

separated by RP-HPLC on a Jupiter (Phenomenex, USA) C18 column (150 × 2 mm, 

4 μm, 90 Å particle size) using a linear gradient (2–60% solvent B in 60 min) in which 

solvent A consisted of 0.1% aqueous FA and solvent B of acetonitrile (CAN) containing 

0.1% FA. Flow-rate was 0.2 mL/min. Mass spectra were generated in positive ion mode 

under constant instrumental conditions: source voltage 5.0 kV, capillary voltage 46 V, 

sheath gas flow 20 (arbitrary units), auxiliary gas flow 10 (arbitrary units), sweep gas flow 

1 (arbitrary units), capillary temperature 200 °C, tube lens voltage −105 V. Spectra 

analyses were performed using Xcalibur software 2.0.7. 
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3.2.12 Biochemical evaluation of LH activity 

Reaction mixtures (5 μL total volume) containing wild-type or mutant LH3 samples at 

0.2 mg mL−1 were prepared by sequentially adding 0–1 mM peptide substrate or 

4 mg mL−1 gelatin in water, (solubilized through heating denaturation at 95 °C for 

10 min), 500 μM ascorbate, 100 μM 2-OG, and variable concentrations of FeCl2 (0–

200 μM), and let incubate for 1 h at 37 °C. Reactions were stopped by heating samples at 

95 °C for 2 min prior to transfer into Proxiplate white 384-well plates (Perkin-Elmer), 

then 5 μL of the Succinate-Glo reagent I (Promega) were added and let incubate 1 h at 

25 °C, after that 10 μL of the Succinate-Glo reagent II (Promega) were added and let 

incubate 10 min at 25 °C. The plates were then transferred into a GloMax plate reader 

(Promega) configured according to manufacturer’s instructions for luminescence 

detection. All experiments were performed in triplicates. Control experiments were 

performed using identical conditions by selectively removing LH3, 2-OG or peptide 

substrates. Data were analyzed and plotted using the GraphPad Prism 7 software69. 

3.2.13 Biochemical evaluation of GT and GGT enzymatic activities 

Reaction mixtures (5 μL total volume) containing wild-type or mutant LH3 samples at 

0.2 mg mL−1 were prepared by sequentially adding 0–1 mM peptide substrate, 500 μM 

ascorbate, 100 μM 2-OG, 50 μM FeCl2, and let incubate for 1 h at 37 °C. Reactions 

mixtures were then supplemented with 50 μM MnCl2, and 50μM UDP-Gal or UDP-Glc, 

and let incubate for 1 h at 37 °C. Experiments using gelatin as substrate were performed 

by sequentially adding 4 mg mL−1 gelatin in water, (solubilized through heating 

denaturation at 95 °C for 10 min), 50 μM MnCl2, and 100 μM UDP-Gal or UDP-Glc to 

the LH3 samples at 0.2 mg mL−1, and let incubate for 1 h at 37 °C. All reactions were 

stopped by heating at 95 °C for 2 min, prior to transfer into Proxiplate white 384-well 

plates (Perkin-Elmer), then 5 μL of the UDP-Glo luminescence detection reagent 

(Promega) were added and let incubate 1 h at 25 °C. Detection was carried out as 

described for the LH enzymatic activity. All experiments were performed in triplicates. 

Control experiments were performed using identical conditions by selectively removing 

LH3, donor or acceptor substrates. Data were analyzed and plotted using the GraphPad 

Prism 7 software69. 

3.2.14 Surface-plasmon resonance 

Wild-type and mutant LH3 preparations were immobilized onto a carboxymethylated 

dextran (CM5) sensor chip (GE Healthcare) using a mixed solution of 200 mM 1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) in 50 mM N-

hydroxysuccinimide (NHS) in a Biacore T200 SPR instrument (GE Healthcare). Excess 

reactive groups were blocked with 1 M ethanolamine. Efficient immobilization of LH3 

samples was judged based on the SPR signal collected. For each of the tested samples, 
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3000 RU were reached. A control flow cell 1 was pre-activated and blocked using the 

same protocol as above but without protein samples, and used as reference cell during 

measurements. Collagen peptides were dissolved in running buffer (PBS-P 0.01%) and 

injected as two-fold dilution concentration series of eight points each using a flow of 5 μl 

min−1. Two replicates of each concentration were injected. Data analysis was performed 

using the Biacore T200 evaluation software (GE Healthcare) using a 1:1 steady-state 

affinity model. 

3.2.15 Data availability 

Coordinates and structure factors have been deposited in the Protein Data Bank (PDB) 

with accession codes 6FXK, 6FXM, 6FXR, 6FXT, 6FXX, 6FXY. SEC-SAXS 

experimental data and ab-initio model have been deposited in Small Angle Scattering 

Biological Data Bank (SASBDB) with accession code SASDDW4. Other data are 

available from the corresponding author upon reasonable request. 

3.3 RESULTS 

3.3.1 LH3 has three domains encompassing multiple catalytic sites 

We have generated human stable cell lines for large-scale production of full length, 

glycosylated human LH3, and established methods for its purification and evaluation of 

its LH and GT enzymatic activities (Supplementary Fig. 1). ICP-MS analyses indicated 

that all enzyme preparations contained Fe2+ with a 1:1 stoichiometry (see Methods). We 

observed significant uncoupling (up to 25%) of donor substrate activation, with 

substrate-independent generation of the succinate or UDP reaction products, 

respectively. Nevertheless, we could detect significantly increased enzymatic activity in 

the presence of synthetic peptides (Supplementary Fig. 1C) or gelatin (Supplementary Fig. 

1D) as acceptor substrates. We could confirm such reactivity by detection of 

concentration-dependent binding (Supplementary Fig. 2A) and appearance of post-

translationally modified lysine residues on synthetic peptides upon LH3 treatment 

(Supplementary Fig. 2B). In our peptide binding measurements, all surface plasmon 

resonance (SPR) profiles were characterized by very fast association and dissociation 

events and very weak (millimolar) binding affinities (Supplementary Fig. 2A). 

Crystal structures of LH3 were determined in complex with various substrates and 

cofactors at resolutions ranging between 2.1 and 3.0 Å (Supplementary Table 1). 

Diffraction data were systematically affected by strong anisotropy (Supplementary Fig. 3), 

thus structure determination required anisotropy correction followed by a combination of 

experimental phasing with heavy atom and highly redundant native single wavelength 

anomalous dispersion (SAD), eventually yielding electron density maps of superb quality 

(Supplementary fig. 4A, B). Residues Asn63 and Asn548 showed extended electron 

densities protruding from their side chains (Supplementary fig. 4C), indicating the 
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expected N-linked glycosylations. The LH3 monomer encompasses three domains 

aligned along one direction (Fig. 3-1a). The first two N-terminal domains show 

Rossmann-fold architectures reminiscent of glycosyltransferases33,34, whereas the C-

terminal domain is characterized by a double-stranded β-helix (DSBH) fold, highly 

conserved among the 2-OG, Fe2+-dependent dioxygenases35,36. Overall, the three-

dimensional structure of the LH3 full-length enzyme provides a molecular blueprint to 

elucidate previous suggestions on the enzyme architecture based on biochemical data: GT 

and GGT activities localize at the N-terminus of the enzyme, whereas the LH activity is 

segregated at the LH3 C-terminus37,38. 
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Figure 3-1 Molecular architecture of human LH3 
a. Cartoon representation of the LH3 enzyme, showing its organization with three domains aligned 
from the N- to the C- terminus. Based on results of functional assays, the first two 
glycosyltransferase domains have been named GT (catalytic glycosyltransferase, blue) and AC 
(accessory, orange), respectively. The C-terminal domain hosts the Fe2+ and 2-OG cofactors 
necessary for lysyl hydroxylase activity, and therefore has been named LH (green). Metal ions are 
shown as spheres, cofactors and glycans as sticks. b. Introduction of additional glycosylation sites 
identifies the LH3 dimer interface in solution. Glycosylated mutants R714N and T672N induce 
disruption of the dimeric assembly, as observed in analytical size exclusion chromatography 
experiments. Control glycosylated mutant W148N-L150T, located at a crystal contact interface, is a 
dimer as wild-type LH3. c. Overview of the LH3 dimer as observed in the crystal structures. The 

quaternary arrangement highlights an elongated tail-to-tail dimer extending for over 20 nm in one 
direction, connected through strong electrostatic and hydrophobic interactions near the LH catalytic 
site. Fe2+ and 2-OG in the neighboring catalytic site are shown with spheres and sticks, respectively. 
For clarity, one LH3 monomer is colored as in a, whereas the other is shown in white. d. The 
molecular interface connecting two C-terminal LH domains in the LH3 crystal structure is 
characterized by strong hydrophobic interactions involving Leu715 of one monomer (green) and 
various aromatic residues shaping a cavity on the opposite monomer (white). This hydrophobic 
contact is surrounded by electrostatic interactions. For clarity, only the amino acids of one monomer 
are labeled. e. Details of the LH3 dimer interface. Shown is the electrostatic potential computed 
using APBS70colored from −10 kbTec

−1 (red) to +10 kbTec
−1 (blue) 
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3.3.2 LH3 forms elongated tail-to-tail dimers 

Although the asymmetric units of our LH3 crystal structures contain a single LH3 

monomer, previous biochemical studies20,38 and our size exclusion chromatography 

coupled to small-angle X-ray scattering (SEC-SAXS) analyses consistently showed 

200 kDa dimers in solution (Supplementary Fig. 1A). The crystal packing indeed suggests 

two homodimeric arrangements with physiologically plausible assemblies (Supplementary 

Fig. 5). A first, elongated, tail-to-tail quaternary structure shares nearly identical dimer 

interface with that observed recently in a C-terminal fragment of a viral LH homolog 

(L230-LH)39. This interface interconnects the C-terminal domains of LH3 and exposes 

individual glycosyltransferase domains at the two sides of the dimer (Supplementary Fig. 

5B). A second, more compact antiparallel conformation is characterized by contacts 

between the glycosyltransferase domains and exposes individual lysyl hydroxylase 

domains at the two sides of the dimer (Supplementary Fig. 5C). Both interfaces are 

characterized by a large, buried surface area and numerous hydrogen bonds and 

hydrophobic interactions. Previous biochemical characterizations based on C-terminal 

LH3 deletions indicated residues Lys541-Glu547 as essential for dimerization38. In our 

structures, both observed dimeric assemblies fully support this statement, as this region is 

located in a linking platform connecting the central glycosyltransferase domain with the 

C-terminal domain (Fig. 3-1a). Initial attempts using SAXS and computational methods 

to discriminate between crystallographic contacts and stable dimers in solution 

(Supplementary Fig. 5–6) were not conclusive. A recent report suggested that in both 

homologous viral L230-LH domain and in human LH2, replacement of the fully 

conserved, surface-exposed C-terminal residue Leu715 (LH3 numbering, located in the 

middle of the “elongated” dimer interface found in the LH3 crystal structure) with a 

charged Asp could disrupt the enzyme’s dimeric assembly and generate inactive, 

monomeric species in solution39. We took advantage of this information and introduced 

the corresponding L715D mutation in LH3; we also opted for generating a second 

mutant, bearing a positive Arg side chain replacing Leu715. Surprisingly, the L715D 

mutant was comparable to wild-type LH3 in activity assays and in analytical size exclusion 

chromatography experiments, while we observed slightly increased retention volumes and 

abolished LH activity for the L715R mutant (Supplementary Fig. 7). Similarly, removal of 

Fe2+ using chelating agents and acidification, successfully exploited to destabilize both 

viral LH and human LH2 dimer interfaces39 did not seem to affect LH3 stability 

(Supplementary Fig. 7C). We therefore decided to introduce more pronounced steric 

hindrance at the observed crystallographic dimer interfaces, through mutations carrying 

additional glycosylation sites. Mutants T672N and R714N, both adding a glycosylation 

near the C-terminal dimer interface as verified by SDS-PAGE and enzymatic 

deglycosylation experiments (Supplementary Fig. 7A, B, Supplementary Fig. 17), shifted 

the size exclusion retention volumes towards monomeric species (Fig. 3-1b) and 

abolished LH activity (Supplementary Fig. 7D). On the contrary, the LH3 mutant 
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W148N-L150T, introducing an additional glycosylation at the “compact” N-terminal 

interface did not affect the dimeric quaternary structure of LH3 nor the LH enzymatic 

activity (Fig. 3-1b, Supplementary Fig. 7D). We therefore concluded that the physiological 

LH3 dimeric assembly corresponds to the elongated, tail-to-tail arrangement shown in 

Fig. 3-1c. This interface is characterized by two-fold symmetric interactions involving a 

rather limited set of aminoacid side chains engaged in electrostatic contacts, plus a deep 

hydrophobic cavity shaped by Phe673, Phe639, Tyr642 and Thr672 hosting the side chain 

of Leu715 from the opposite monomer (Fig. 3-1d, e). 

3.3.3 Structural insights into LH3 glycosyltransferase activity 

The N-terminal LH3 glycosyltransferase domain partially shares tertiary structure 

topology with divalent metal ion-dependent class-A glycosyltransferase folds (GT-A)33, 

but with distinguishing structural features as expected given the very low sequence 

identity conservation, lower than 12%. Indeed, although numerous three-dimensional 

structures of GT-A glycosyltransferases are available in the protein data bank, 

superpositions with even the closest structural homolog yielded root mean square 

deviations (r.m.s.d.) higher than 3 Å (Supplementary Fig. 8A). Notably, this LH3 domain 

lacks a highly conserved α-β hairpin at its N-terminus near residue Gly70, and includes 

other structural elements surprisingly well conserved at the primary sequence level within 

the LH enzyme family (Supplementary Fig. 9), but distinct from other 

glycosyltransferases. In particular, the conformations of four loops differ from GT-A 

structures and shape the substrate-binding face of the N-terminal domain of LH3 

(Supplementary Fig. 8A). Among these, a very flexible surface loop comprising residues 

Gly72 to Gly87 is not visible in the electron density of ligand-free LH3 structures. This 

loop contains several residues highly conserved among LH isoforms (Supplementary Fig. 

9), which are not found in other glycosyltransferases. A cavity characterized by aspartate 

residues 112 and 115 and His253 shapes the metal ion binding site. Co-crystallizations 

with Mn2+ resulted in appearance of strong electron density proximate to these residues 

for the metal ion and two coordinating water molecules, without observable 

conformational changes compared to ligand-free LH3 (Supplementary Fig. 10A). Co-

crystallizations with Mn2+ and donor substrates UDP-galactose or UDP-glucose yielded 

additional clear electron densities for UDP, but not for the glycan moieties (Fig. 2a). We 

observed weak electron density near the UDP pyrophosphate group partially compatible 

with glycan donor substrates, but we refrain from modeling anything inside this weak 

density, likely representative of multiple conformations simultaneously trapped in the 

substrate binding cavity (Supplementary Fig. 10B). We could not detect significant 

differences when comparing co-crystal structures obtained using UDP-Gal or UDP-Glc 

donor substrates. Nonetheless, binding of these donor substrates induced dramatic 

conformational changes in the enzyme’s catalytic site, with full stabilization of the flexible 

Gly72-Gly87 loop in a “closed” conformation (Fig. 3-2b). The UDP pyrophosphate 
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group is stabilized by interactions with Mn2+ and hydrogen bonding with Lys259 and 

backbone nitrogen of Gly256; both residues are positioned in a uniquely shaped α-helix 

located at the C-terminus of the domain. The hydroxyl groups of the ribose form a 

network of hydrogen bonds with backbone atoms of Ser113 and Tyr114. The uracil 

moiety is sandwiched through π-π stacking interactions between Trp75 and Tyr114, and 

is stabilized by hydrogen bonding with Thr46 (Fig. 3-2a, b, Supplementary Fig. 10). Of 

note, these two residues highlight an unprecedented arrangement of UDP binding 

residues in glycosyltransferases: Trp75 belongs to the distinctive LH3 flexible loop 

covering residues Gly72-Gly87, that becomes fully stabilized upon substrate binding (Fig. 

3-2b); Tyr114 is part of a non-canonical DxxD motif (Supplementary fig. 9), where 

Asp112, and Asp115 are responsible for Mn2+ coordination. Structurally related 

glycosyltransferases also often bear tyrosine residues stacking with the UDP moiety, but 

these residues are located far in sequence from the canonical DxD motif40,41 responsible 

for metal ion coordination. Site-directed mutagenesis on Trp75 or Tyr114 into alanine 

residues yielded folded, but almost completely inactive LH3 variants (Fig. 3-2c, 

Supplementary fig. 11). Binding data using SPR on synthetic collagen peptides showed 

very limited differences between wild-type and mutant LH3 (Supplementary Fig. 11D). 

Together, these results highlight the distinguishing roles of Trp75 and Tyr114 in donor 

substrate binding and stabilization. 
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Figure 3-2 Insights into LH3 glycosyltransferase activity 
a Co-crystallizations with Mn2+ and donor substrates revealed clear electron density (2Fo-Fc omit 
electron density maps, green mesh, contour level 1.2 σ) for the metal ion and for UDP in the catalytic 
site of the N-terminal GT domain. Residues involved in coordination of the metal ion are shown 
with orange sticks, while residues interacting and stabilizing UDP binding are shown in blue. 
Residue Asn223, found mutated into a Ser and causing pathogenic phenotypes similar to 
osteogenesis imperfecta, is shown with magenta sticks. b Binding of donor substrates induces 
conformational changes in the GT domain. Shown is a superposition of ligand-free (yellow), Mn2+-
bound (blue), and Mn2+-donor substrate-bound (violet) structures of LH3 GT domain. Only the 
UDP-Gal-bound structure is shown; the conformation observed in UDP-Glc-bound structure is 
identical. Flexible loop 72–87 becomes well defined only in donor substrate-bound structures; in 
these structures, residues Trp145 and Trp148 adopt different conformations. c Luminescence-based 
assays for the evaluation of LH3 GT enzymatic activity show that mutants W75A, Y114A, and N223S 
are inactive. Control experiments were performed without adding enzyme. Error bars represent 
standard deviations from average of triplicate independent experiments. Statistical evaluations based 
on pair sample comparisons between uncoupled and coupled assay values using Student’s t-test. *P-
value <0.05; ***P-value <0.001. d Details of the interface between the N-terminal (GT, blue) and the 
central (AC, orange) LH3 glycosyltransferase domain. Residues found at the interface are shown as 
sticks (side chain view only). The disulfide bond found in the linker region between the two 
domains is shown with yellow spheres on the sulfur atoms. 
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Two tryptophan residues Trp145 and Trp148 proximate to the UDP-binding cavity 

consistently change their side chain conformations in structures with bound donor 

substrates (Fig. 3-2b). In UDP-glycan-bound structures, residue Trp145 adopts a 

conformation that can easily accommodate the sugar moiety during catalysis (Fig. 3-2b). 

In the absence of donor substrates this residue partially obstructs the cavity, thus acting 

as a gating residue to host the UDP-glycan (Fig. 3-2b). Trp148 localizes on the LH3 

surface, in a region distant from the glycosyltransferase catalytic site located at the 

interface between two crystallographically related LH3 molecules. Interestingly, both 

Trp145 and Trp148 residues are located in one of the loops that are not conserved 

neither in glycosyltransferases, nor in other LH enzymes (Supplementary Fig. 9): this 

region may therefore have a role in recognition and binding of donor and/or acceptor 

substrates, highlighting the unusual mechanisms of LH3 GT/GGT activity. Of note, 

mutagenesis studies aimed at characterizing LH3 GT/GGT activities showed that 

residues in this loop are indeed critical for LH3-mediated collagen glycosylation19 

(Supplementary Table 2). The neighboring region comprising residues 187–191 is 

characterized by a non-conserved poly-Asp repeat (Supplementary Fig. 10B), and 

mutations on Asp190 and Asp191 were reported to abolish the glycosyltransferase 

activity19 (Supplementary Table 2). In UDP-bound structures, this short loop forms 

contacts with the stabilized Gly72-Gly87 loop directly involved in UDP interaction (Fig. 

3-2b). Although Asp190 and Asp191 are not directly involved in binding of enzyme 

cofactors and substrates, both residues point towards the active site near Trp145, possibly 

playing roles as nucleophiles during the glycosyltransferase reaction, or supporting 

solvent-bridged interactions with the glycan co-substrates. 

Interestingly, the pathogenic LH3 mutation N223S, responsible for an LH3-dependent 

developmental connective tissue disorder with phenotype resembling osteogenesis 

imperfecta11 localizes in close proximity to the identified LH3 GT/GGT catalytic site 

(Fig. 3-2a). This mutation was reported to introduce a new N-linked glycosylation site on 

residue Asn221, resulting in strongly reduced LH3 GT/GGT activity (Supplementary 

Table 2). We produced this enzyme variant obtaining a folded, dimeric enzyme 

comparable with wild type LH3 (Supplementary Fig. 11A, B). However, due to 

pronounced instability and high propensity to degradation for this mutant, we could not 

unambiguously confirm that this disease-linked mutant bears an additional glycosylation 

(Supplementary Fig. 11A). LH3 N223S showed severely reduced lysyl hydroxylase and 

fully abolished glycosyltransferase activities (Fig. 3-2c, Supplementary Fig. 11C). As we 

did not observe changes in LH3 oligomeric assembly in the presence of this pathogenic 

mutation (Supplementary Fig. 11B), we concluded that the lack of enzymatic activity 

caused by this variant is likely due to the alterations in enzyme stability, possibly 

introduced by the novel glycosylation on Asn221, which would interfere with recognition 

of acceptor substrate molecules. 
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The C-terminal part of the first glycosyltransferase domain of LH3 incorporates other 

uniquely structured regions: a long, non-conserved beta hairpin constituted by residues 

Val229-Ala244 points towards the domain face opposite to the GT/GGT catalytic site. 

This segment is stabilized by numerous hydrophobic contacts including Phe233, Trp273 

and with a non-conserved α-helix formed by residues Pro257-Glu276, which is 

sandwiched between the first and the second domain of LH3 (Fig. 3-2d). Residues linking 

these two domains extend to a solvent-exposed region of the enzyme comprising the 

Cys279-Cys282 disulfide bridge and a flexible loop extending from Asp285 to Gly292, 

and not visible in the electron density. Antibodies targeting these residues were reported 

to reduce GT activity17, suggesting a role for this surface-exposed region in modulating 

accessibility of acceptor substrates to the identified glycosyltransferase catalytic site 

(Supplementary Table 2). 

In the central LH3 domain, two previously suggested candidate metal ion binding sites 

are present, identified by a DxD (Asp392, Ala393, Asp394) and a DxDxD (Asp486, 

Thr487, Asp488, Pro489, Asp490) motif, respectively18,19 (Supplementary Fig. 12). Co-

crystallization experiments with metal ions and glycosyltransferase substrates and 

products did not highlight any appreciable differences within this domain compared to 

ligand-free structures (Supplementary Fig 13A). On the contrary, superposition of the 

two glycosyltransferase domains of LH3 showed remarkable differences, emphasized by 

the unique features found in the first domain (Supplementary Fig. 8, Supplementary Fig. 

13B). Although the overall fold of the second domain shares higher similarity than the 

first with known GT-A type glycosyltransferases (Supplementary Fig. 13C, D), extensive 

mutagenesis experiments did not allow clear identification of residues implicated in metal 

ion or substrate binding for LH3 GT catalytic activity18,19 (Supplementary Table 2). Our 

structures highlight an unusual conformation for the Val304-Phe310 loop: this region 

overlaps with the donor substrate binding site observed in structural homologs, strongly 

interfering with donor substrate binding (Supplementary Fig. 13E). Furthermore, 

recombinant N-terminal LH3 constructs devoid of this domain were still capable of 

glycosylating collagen peptides similar to the wild-type enzyme19 (Supplementary Table 2). 

Collectively, these data indicate that despite the overall conservation of the 

glycosyltransferase fold, this domain may have lost its enzymatic capabilities during 

evolution. It may therefore constitute a non-catalytic accessory element within the LH3 

architecture, possibly involved in collagen substrate recognition or interactions with LH 

binding partners. Thus, we named the LH3 N-terminal domain catalytic 

glycosyltransferase (GT), and the central domain accessory (AC). 

3.3.4 Structural insights into LH3 lysyl hydroxylase activity 

The C-terminal domain of LH3 hosts the lysyl hydroxylase catalytic site of the enzyme. 

This domain shows the typical DSBH fold, characterized by two β-sheets with antiparallel 
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β-strands flanked by three α-helices (Fig. 3-3a). This fold is preceded by two additional 

short helices covering residues Thr523 to Asp554, serving as a buffer platform between 

the AC and the LH domain (Fig. 3-1a). Residues 590–610 constitute a flexible loop 

capping the LH catalytic site. Superposition with identified structural homologs 

highlighted the high conservation of the overall fold and the consistent presence of highly 

flexible residues near the Fe2+, 2-OG binding site (Supplementary Fig. 14A). The recently 

determined structure of a viral L230-LH domain39 shows very high overall similarity 

(r.m.s.d. = 1.3 Å), with the exception of surface-exposed residues Ser550-Ile558, likely 

due to the non-conserved N-linked glycosylation at residue Asn548 (Supplementary Fig. 

14B); also the structure of the viral LH fragment shows a completely flexible capping 

loop. All our LH3 structures systematically showed Fe2+ and 2-OG in the electron density 

near the core of this domain (Fig. 3-3a), confirming that these cofactors are tightly bound 

to the enzyme and providing a possible explanation for the observed substrate uncoupled 

LH enzymatic activity (Supplementary Fig. 1C, D). Given the high structural similarity of 

our LH3 structure with the LH domain of the viral variant, we were surprised not to find 

the 2-OG cofactor in this structure. We interpreted this difference as due to usage of a 

prokaryotic expression system for the recombinant production of the viral homolog39. In 

human LH3, the Fe2+ ion is stabilized by interactions with residue His719 and with 

residues His667 and Asp669, which constitute part of a HxD motif fully conserved in the 

Fe2+, 2-OG dioxygenase enzyme family (Supplementary Fig. 15). Mutations in these 

residues17, including a recently identified pathogenic variant of LH2 causing Bruck 

syndrome8, were found to completely abolish LH activity (Supplementary Table 2). 

Pathogenic LH3 mutations causing premature C-terminal enzyme truncations lacking 

His719 were found incapable of hydroxylating collagen lysines, although retaining 

GT/GGT activities11 (Supplementary Table 2). Residues Tyr656, Cys691 and Arg729 are 

fully conserved among LH isoforms and delimit the pocket hosting the 2-OG cofactor 

(Supplementary Fig. 14C). In particular, the side chain of free Cys691 contributes to the 

positioning of the carboxyl moiety of the 2-OG cofactor in the direction of Arg729, 

forming a salt bridge with the guanidinium group of this residue. In addition, biochemical 

mutations of Arg729 in homologous LH1 (Arg719 in LH3) were reported to cause 

complete loss of LH activity due to decreased binding affinity for 2-OG42; these data are 

also in agreement with a recent report analyzing these mutations in the viral L230-LH 

homolog39 (Supplementary Table 2). 
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3.3.5 Excess Fe2+ induces a state showing substrate mimicry 

By increasing the Fe2+ concentration in crystallization experiments, we serendipitously 

found that this metal ion contributes to the overall enzyme stabilization, systematically 

enhancing the quality and the resolution of X-ray diffraction data. Analysis of electron 

Figure 3-3 Insights into LH3 lysyl hydroxylase activity 
a All our LH3 structures consistently show clear electron density for bound Fe2+ and 2-OG in the LH 
catalytic cavity (2Fo-Fc omit electron density maps, green mesh, contour level 1.2 σ). Residues 
involved in interactions with Fe2+ and 2-OG are shown with green sticks. b Co-crystallizations with 
Fe2+ allow identification of a second metal ion bound near the LH catalytic site that stabilizes the 
flexible capping loop 590–610 (shown in pink). c Evaluation of collagen substrate coupled and 
uncoupled LH3 LH activities as a function of Fe2+ concentration. Error bars represent standard 
deviations from average of triplicate independent experiments. d In Fe2+ co-crystal structures, the 
conformation observed for residue Arg599 mimics the collagen lysine substrate in front of the 2-OG 
cofactor, yielding a non-productive ternary complex. Shown is the superposition of this 
conformation found in the LH3 LH domain (green) with a homologous algal prolyl-4-hydroxylase 

(white) in complex with a short poly-PS peptide (yellow)43. The LH3 loop 590–610 is shown in pink. 
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density maps allowed the identification of a second Fe2+ in the LH domain, coordinated 

by residues His595, Asp597, Asp611 and His613 (Fig. 3-3b). Metal ion coordination 

stabilizes the flexible capping loop 590–610 into a conformation that completely plugs 

the LH catalytic site, in proximity to the dimer interface (Supplementary Fig. 16A). We 

could observe a very similar arrangement, although slightly more flexible, by replacing 

Fe2+ with Mn2+ in crystallization experiments (Supplementary Fig. 16B). Early reports 

indicated that LH enzymes may be inhibited by high concentrations of metal ions20. We 

probed LH3 enzymatic activity in the presence of increasing concentrations of Fe2+, and 

found that the enzymatic activity peaks at 25 μM Fe2+ concentration. Higher metal ion 

concentrations yield significant reduction of LH uncoupling, but do not seem to affect 

the enzymatic reactivity in the presence of synthetic peptide substrates (Fig. 3-3c). In the 

metal-ion stabilized conformations we also found that residue Arg599 forms a salt bridge 

with the 2-OG co-substrate, yielding a conformation that may mimic the collagen lysine 

substrate. The positioning of Arg599 indeed superimposes to that of a collagen proline 

residue as observed in a homologous prolyl hydroxylase structure in complex with a short 

peptide43 (Fig. 3-3d) 

3.4 DISCUSSION 

Despite being known for over 40 years44, several molecular aspects underlying collagen 

lysyl hydroxylases function are still obscure. Our crystal structures of full-length human 

LH3 rationalize the accumulated biochemical knowledge, offering a template to better 

understand the molecular mechanisms of LH3-dependent collagen hydroxylation and 

glycosylation. 

The two different enzymatic activities are segregated in two distinct catalytic sites 80 Å 

apart within the same enzyme molecule. The overall dimeric arrangement, experimentally 

validated through site-directed mutagenesis, shows an elongated tail-to-tail quaternary 

assembly (Fig. 3-1c), characterized by a relatively small hydrophobic contact platform 

surrounded by electrostatic contacts that stabilize the dimer interface near the LH 

catalytic site (Fig. 3-1c–e) and closely resemble those recently reported for homologous 

human LH2 and viral L23039 (Supplementary Fig. 14B). As previously suggested, 

dimerization is essential for LH activity, whereas disruption of physiological dimers does 

not significantly perturb the N-terminal glycosyltransferase activities of LH338,39. 

We identified two glycosyltransferase domains at the N-terminus of the enzyme 

characterized by Rossmann fold-like domain architecture and partial similarity with 

known GT-A glycosyltransferases. However, only the first domain is active: the GT 

domain (residues 33–277) is the solely responsible for glycosyltransferase activities (both 

GT and GGT), albeit showing unique features in multiple regions of its fold strongly 

divergent from known glycosyltransferases (Supplementary Fig. 8). Sequence alignments 
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comparing human LH isoforms (Supplementary Fig. 9) and analysis of donor substrate-

free and bound structures do not provide a direct explanation for the lack of GT/GGT 

activities in homologous LH1 and LH2. Nearly all residues surrounding the UDP moiety 

and shaping the LH3 glycosyltransferase catalytic site are conserved, including those 

involved in the unprecedented mode of UDP-substrate stabilization characterized by dual 

π-π stacking with Trp75 and Tyr114. Nevertheless, sequence conservation at the rim of 

the catalytic site is much lower (Supplementary Fig. 9), suggesting that lack of collagen 

substrate recognition may be the reason for the absence of glycosyltransferase activity in 

homologous LH isoforms. 

The adjacent AC domain does not appear to be directly involved in enzyme function. 

Surprisingly, this domain shares the highest structural similarities with known 

glycosyltransferases, and yet it may have lost its function during evolution through 

mutations that introduced steric hindrance in the donor and acceptor substrate binding 

regions (Supplementary Fig. 13E). Despite the lack of direct evidence of substrate 

recognition capabilities, the elongated quaternary structure of the LH3 enzyme allows to 

speculate about possible long-range collagen substrate recognition mechanisms involving 

this domain. Alternatively, it may serve as a docking module for interactions with binding 

partners, such as the proposed collagen glycosyltransferases GLT25D1/226 or chaperones 

like FKBP6524,25. 

In the C-terminal LH domain both Fe2+ and 2-OG are natively retained and consistently 

found in the electron densities of all our structures (Fig. 3-3a). Enzymatic assays show 

that LH activity is present without the need for Fe2+ supplementation, demonstrating that 

the metal ion remains tightly bound into the active site during catalysis, and supporting 

recent reports also indicating essential roles for the metal ion in folding maintenance of 

LH domain39. Concentrations higher than 25 μM affect the LH3 uncoupled catalytic 

activity, but do not seem to affect substrate processing. Crystals grown with excess Fe2+ 

or Mn2+ show stabilization of a substrate gating loop, with formation of a self-inactivated 

ternary complex between Fe2+, 2-OG and the side chain of Arg599 mimicking the 

collagen lysine substrate and obstructing the enzyme’s active site (Fig. 3-3b, c). Despite 

gating loops have been described for prolyl-hydroxylases43,45,46, the presence of a metal 

ion-induced gating seems a prerogative of LH enzymes. Given the full conservation in 

the LH enzyme family of amino acid residues involved in coordination of the second 

Fe2+ (Supplementary Fig. 15), we postulate that a general mechanism for metal ion-

dependent regulation of LH activity may rely on generation of a self-inactivated resting 

state with interlocking of the 591–610 gating loop in front of the catalytic site. 

Remarkably, mutation of LH2 conserved homologous Arg599 into a histidine, as well as 

other mutations localized on this gating loop, perturb the enzymatic activity and cause 

Bruck syndrome7 (Supplementary Table 2). This corroborates the proposed role of the 



Francesca De Giorgi 

 

90 

 

90 

590–610 gating loop in modulating substrate accessibility to the LH active site, and in 

particular the role of conserved Arg599 as non-productive substrate mimicry. 

The LH3 structures allow understanding the molecular phenotypes associated to most of 

the pathogenic mutations involving LH enzymes (Fig. 3-4). The LH3 N223S variant 

causing connective tissue disorders similar to osteogenesis imperfecta was reported to 

introduce a novel N-linked glycosylation near the cavity hosting the glycosyltransferase 

donor substrates. Our experiments show that this alteration strongly affects the enzyme’s 

stability, causing degradation, and completely abolishes GT and GGT activities. 

Pathogenic mutations of LH1 responsible for the kyphoscoliotic variant of the Ehlers-

Danlos syndrome were reported to reduce, but not abolish, mechanisms of collagen 

recognition and catalysis (Supplementary Table 2). This is fully consistent with their 

localization on the enzyme’s surface, distant from the identified catalytic sites, with the 

exception of pathogenic mutation H706R, which maps to a conserved residue in close 

proximity to the homodimer interface. Conversely, LH2 mutations causing severe Bruck 

syndrome are located within the LH active site, either proximate to the 2-OG binding 

site, directly involved in Fe2+ coordination, or in the self-inactivated capping loop, also 

including the lysine mimicry residue Arg599 (Supplementary Table 2). Given the recent 

reports describing implications of human LH2 and its upregulated enzymatic activity in 

metastatic spreading of numerous solid tumors13, our full-length structures of self-

inhibited human LH3 constitute a valid template for structure-based drug discovery 

campaigns aiming at blocking unwanted collagen lysine hydroxylation in tumor 

microenvironments. 

Figure 3-4 Mapping of disease-related mutations identified in LH enzymes on the LH3 crystal 
structure. The positions of pathogenic mutations causing Ehlers-Danlos type VI syndrome in LH1 
(cyan), Bruck syndrome type II in LH2 (yellow), and connective tissue diseases sharing phenotype 
features with osteogenesis imperfecta (red) in LH3 are shown as spheres on the LH3 dimer 
structure. Mutations N223S and C691A*, found on LH3, are labeled in red in one of the two 
monomers. A complete list of mutations reported in the literature and their significance based on 

evaluation of their mapping on the LH3 crystal structure is shown in Supplementary Table 2 
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In conclusion, the crystal structures of full-length human LH3 in complex with various 

cofactors and donor substrates provide a molecular understanding of the biochemical 

knowledge underlying the multiple functions of this enzyme. Our data shed light on the 

unique molecular architecture of the LH3 glycosyltransferase domains, and allow 

understanding of the molecular bases of multiple genetic diseases involving LH3 and 

homologous human lysyl hydroxylases. 
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ABSTRACT 

Hydroxylysine glycosylations are collagen-specific post-translational modifications 

essential for maturation and homeostasis of fibrillar as well as non-fibrillar collagen 

molecules. Lysyl hydroxylase 3 (LH3) is the only human enzyme capable of performing 

two chemically-distinct collagen glycosyltransferase reactions using the same catalytic site: 

inverting beta-1,O-galactosylation of hydroxylysines and retaining alpha-1,2-glycosylation 

of galactosyl hydroxylysines. 

Here, we used structure-based mutagenesis to show that both glycosyltransferase 

activities are strongly dependent on a broad cooperative network of amino acid side 

chains which includes the first-shell environment of the glycosyltransferase catalytic site 

and shares features with both retaining and inverting enzymes. We identified critical “hot 

spots” leading to selective loss of inverting activity without affecting the retaining 

reaction. Finally, we present molecular structures of LH3 in complex with UDP-sugar 

analogs which provide the first structural templates for LH3 glycosyltransferase inhibitor 

development. 

Collectively, our data provide a comprehensive overview of the complex network of 

shapes, charges and interactions that enable LH3 glycosyltransferase activities, expanding 

the molecular framework for the manipulation of glycosyltransferase functions in 

biomedical and biotechnological applications. 
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4.1 INTRODUCTION 

Collagens are the most abundant proteins in the human body and are highly conserved 

from sponges to mammals (Luther et al, 2011; Myllyharju & Kivirikko, 2004). The 

different oligomeric architectures and roles of collagen molecules strongly depend on a 

variety of post-translational modifications, including proline and lysine hydroxylations, as 

well highly specific glycosylations of hydroxylated lysines (HyK) (Cummings, 2009; 

Myllyharju & Kivirikko, 2004). The disaccharide present on HyK contains a highly 

conserved glucosyl(α−1,2)-galactosyl(β−1,O) glycan moiety, whose identity was 

discovered in the late sixties (Spiro & Spiro, 1971; Spiro, 1967; Spiro, 1969). 

Monosaccaridic galactosyl-(β−1,O) HyK have been identified as well, as a result of 

catabolic reactions carried out by the collagen α-glucosidase, an enzyme highly specific 

for the disaccharide present on collagenous domains. The role for this enzyme is to 

localize collagen in the glomerular basement membrane (Hamazaki & Hamazaki, 2016; 

Sternberg et al, 1982; Sternberg & Spiro, 1980). The spread of glycosylation largely 

depends on collagen type (Bornstein & Sage, 1980; Spiro, 1969; Terajima et al, 2014), on 

the functional area inside tissues (Moro et al, 2000; Schofield et al, 1971; Toole et al, 

1972), on the developmental stage (Rautavuoma et al, 2004; Sipila et al, 2007) and on 

disease states (Lehmann et al, 1995; Salo et al, 2008; Tenni et al, 1993). Although 

extensively studied, the precise mechanisms of collagen glycosylation and their biological 

relevance in collagen homeostasis have remained poorly understood. 

The identity and exquisite stereochemistry of the Glc(α−1,2)-Gal(β−1,O)-HyK-linked 

carbohydrate supports the idea that at least two distinct enzyme types are needed to fully 

incorporate these complex post-translational modifications on collagen molecules 

(Hennet, 2019). The first reaction indeed requires an inverting-type galactosyltransferase 

(GalT) acting on HyK, whereas the subsequent glucosylation is catalyzed by a retaining-

type glucosylgalactosyltransferase (GlcT). Multifunctional lysyl hydroxylase 3 (LH3) was 

the only enzyme identified as possessing lysyl hydroxylase activity as well as GalT and 

GlcT activities in vitro (Wang et al, 2002a). The glycosyltransferase activities are specific of 

LH3, as highly homologous LH1 and LH2a/b are not capable of catalyzing these 

reactions (Heikkinen et al, 2000). Conversely, in vivo studies have demonstrated that 

decreased LH3 protein levels and/or pathogenic mutations in LH3 GT domain, 

exclusively impair the GlcT activity (Ewans et al, 2019; Salo et al, 2008; Savolainen et al, 

1981). This occurs secondarily to the LH3 p.Asn223Ser, which introduces an additional 

glycosylation site within the enzyme’s GT domain leading to an osteogenesis imperfecta-

like phenotype (Salo et al, 2008); and in the recently identified LH3 p.Pro270Leu, which 

results in a Stickler-like syndrome with vascular complications and variable features 

typical of Ehlers-Danlos syndrome and Epidermolysis Bullosa (Ewans et al, 2019). Mouse 

studies have also shown that only the LH3 GlcT activity is indispensable for the 

biosynthesis of collagen IV and formation of the basement membrane during embryonic 
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development (Rautavuoma et al, 2004; Ruotsalainen et al, 2006), consistent with the 

presence of additional collagen galactosyltransferases. Two genes encoding for O-

galactosyltransferases (GLT25D1 and GLT25D2) were recently identified (Perrin-Tricaud 

et al, 2011; Schegg et al, 2009). It is of interest that GLT25D1 and LH3 were proposed to 

act in concert on collagen molecules (Schegg et al, 2009; Sricholpech et al, 2011; 

Yamauchi & Sricholpech, 2012). Studies on osteosarcoma cell lines which produce large 

amounts of fibrillar collagens, showed that the simultaneous deletion of GLT25D1 and 

GLT25D2 resulted in growth arrest due to lack of glycosylation, further indicating that 

the GalT activity of LH3 might not be as essential as its GlcT activity (Baumann & 

Hennet, 2016). 

These data support the existence of a specific and highly conserved machinery for 

collagen O-glycosylation, and sustain the hypothesis that in vivo the entire collagen 

glycosylation machinery may involve distinct proteins and protein complexes for GalT 

and GlcT reactions. This raises the intriguing question of how this highly conserved 

process is spatiotemporally regulated at the molecular level. Our current understanding of 

collagen glycosyltransferases is however restricted to three-dimensional structures of 

human LH3 in complex with UDP-sugar donor substrates (Scietti et al, 2018) and to few 

mutagenesis studies focusing on the main hallmarks of Mn2+-dependent 

glycosyltransferase catalysis (Wang et al, 2002a; Wang et al, 2002b). 

Here, we combine site-directed mutagenesis scanning with biochemistry and structural 

biology to characterize the glycosyltransferase activities of human LH3. Our data 

highlight an overall distribution of “hot spots” around the extended glycosyltransferase 

cavity of LH3, critically involved in both GalT and GlcT functions, and very few amino 

acid residues capable of selectively abolishing transfer of galactose to HyK without 

affecting GlcT activity. Finally, we also identify and characterize UDP-sugar substrate 

analogs acting as inhibitors of LH3 glycosyltransferase activities. 

Together, our results provide insights into the LH3 glycosyltransferase activities and 

expand the available structural framework for the development of collagen GalT/GlcT 

inhibitors. These insights will assist with the manipulation of LH3 protein functions and 

donor substrate specificity in biomedical applications. 

4.2 EXPERIMENTAL PROCEDURES 

4.2.1  Chemicals 

All chemicals were purchased from Sigma-Aldrich (Germany) unless otherwise specified. 
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4.2.2  Site-directed mutagenesis 

The LH3 coding sequence (GenBank accession number BC011674.2 - Source 

Bioscience), devoid of the N-terminal signal peptide was amplified using oligonucleotides 

containing in-frame 5’-BamHI and 3’-NotI (supplementary Table 3) and cloned in a 

pCR8 vector, that was used as a template for subsequent mutagenesis experiments. All 

LH3 mutants were generated using the Phusion Site Directed Mutagenesis Kit 

(ThermoFisher Scientific). The entire plasmid was amplified using phosphorylated 

primers. For all mutants the forward primer introduced the mutation of interest 

(supplementary Table 3). The linear mutagenized plasmid was phosphorylated prior to 

ligation. All plasmids were checked by Sanger sequencing prior to cloning into the 

expression vector. 

4.2.3 Recombinant protein expression and purification 

Wild-type and mutant LH3 coding sequences were cloned into the pUPE.106.08 

expression vector (U-protein Express BV, The Netherlands) in frame with a 6xHis-tag 

followed by a Tobacco Etch Virus (TEV) protease cleavage site. Suspension growing 

HEK293F cells (Life Technologies, UK) were transfected at a confluence of 106 cells/ml, 

using 1 μg of plasmid DNA and 3 μg of linear polyethyleneimine (PEI; Polysciences, 

Germany). Cells were harvested 6 days after transfection by centrifuging the medium for 

15 minutes at 1000 x g. The clarified medium was filtered using a 0.2 mm syringe filter 

and the pH was adjusted to 8.0 prior to affinity purification as previously described 

(Scietti et al, 2018). All proteins were isolated from the medium exploiting the affinity of 

the 6xHis tag for the HisTrap Excel (GE Healthcare, USA) affinity column. The purified 

protein was further polished using a Superdex 200 10/300 GL (GE Healthcare) 

equilibrated in 25 mM HEPES/NaOH, 200 mM NaCl, pH 8.0, to obtain a homogenous 

protein sample; peak fractions containing the protein of interest were pooled and 

concentrated to 1 mg mL-1. 

4.2.4 Crystallization, data collection, structure determination and refinement 

Wild-type and mutant LH3 co-crystallization experiments were performed using the 

hanging-drop vapor-diffusion method protocols as described in (Scietti et al, 2018), by 

mixing 0.5 μL of enzyme concentrated at 3.5 mg mL-1 with 0.5 μL of reservoir solutions 

composed of 600 mM sodium formate, 12% poly-glutamic-acid (PGA-LM, Molecular 

Dimensions), 100 mM HEPES/NaOH, pH 7.8, 500 μM FeCl2, 500 μM MnCl2, 

supplemented with 1 mM of the appropriate UDP-sugar analogs (UDP, UDP-glucose, 

UDP-glucuronic acid, UDP-xylose). Crystals were cryo-protected with the mother liquor 

supplemented with 20% ethylene glycol, harvested using MicroMounts Loops (Mitegen), 

flash-cooled and stored in liquid nitrogen prior to data acquisition. X-ray diffraction data 

were collected at various beamlines of the European Synchrotron Radiation Facility, 
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Grenoble, France and at the Swiss Light Source, Villigen, Switzerland. Data were indexed 

and integrated using XDS (Kabsch, 2010) and scaled using Aimless (Evans & 

Murshudov, 2013). Data collection statistics are summarized in Suppl. Table 2. The data 

showed strong anisotropy and therefore underwent anisotropic cut-off using 

STARANISO (Tickle et al, 2018) prior to structure determination and refinement. The 

structures were solved by molecular replacement using the structure of wild-type LH3 in 

complex with Fe2+, 2-OG and Mn2+ (PDB ID: 6FXM) (Scietti et al, 2018) as search 

model using PHASER (McCoy et al, 2007). The structure was refined with successive 

steps of manual building in COOT (Emsley et al, 2010) and automated refinement with 

phenix.refine (Adams et al, 2010). Model validation was performed with MolProbity 

(Chen et al, 2010). Refinement statistics for the final models are reported in 

supplementary Table 2. 

4.2.5 Evaluation of LH3 GalT/GlcT enzymatic activity 

LH, GalT and GlcT activities were tested using luminescence-based enzymatic assays 

with a GloMax Discovery (Promega, USA) as described in Scietti et al. (Scietti et al, 

2018). Minor modifications have been done for GalT/GlcT competitive inhibition assays, 

where 1 μL of a mixture of 250 μM MnCl2, 500 μM UDP-galactose (GalT assay) or 

UDP-glucose (GlcT assay) and increasing concentrations of either UDP-GlcA or UDP-

Xyl were initially added to the enzyme and gelatin substrate to start the reactions. All 

experiments were performed in triplicates. Control experiments were performed in the 

same conditions by selectively removing LH3. Data were analyzed and plotted using the 

GraphPad Prism 7 (Graphpad Software, USA). 

4.2.6 Differential Scanning Fluorimetry (DSF) 

DSF assays were performed on LH3 wild-type and mutants using a Tycho NT.6 

instrument (NanoTemper Technologies GmbH, Germany). LH3 samples at a 

concentration of 1 mg/mL in a buffer composed of 25 mM HEPES, 500 mM NaCl, pH 

8. Binding assays were performed by incubating LH3 with 50 μM MnCl2 and 5 mM free 

UDP or UDP-sugar donor substrates or their analogs. Data were analyzed and plotted 

using the GraphPad Prism 7 (Graphpad Software, USA). 

4.3 RESULTS 

4.3.1 Features and roles of the non-conserved LH3 “glycoloop” 

The LH3 N-terminal GT domain shares its fold with Mn2+-dependent GT-A 

glycosyltransferases, encompassing a UDP-donor substrate binding cavity stretched 

towards a GalT/GlcT catalytic pocket (Scietti et al, 2018). We firstly inspected the 

structural organization of the UDP binding cavity to identify signatures for LH3 

glycosyltransferase activity by comparing the amino acid sequences for the residues 
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surrounding the UDP-sugar donor substrate with those of GalT/GlcT-inactive LH1 and 

LH2a/b isoforms. We found that nearly all residues involved in Mn2+ and UDP-sugar 

binding are conserved in orthologs, with the exception of Val80, becoming Lys68 in LH1 

and Gly80 in LH2a/b (Fig 4-1). The presence of a different amino acid side chain 

surrounding the donor substrate cavity led us to consider whether this could be a 

discriminating functional feature among the GT domains in LH enzymes. In LH3, Val80 

is located in the middle of a flexible “glycoloop” (Gly72-Gly87), not visible in the 

electron density of the ligand-free LH3 structure and stabilized upon UDP-substrate 

binding (Scietti et al, 2018). Within this glycoloop, residue Val80 is in close proximity to 

the ribose ring of the UDP-sugar donor substrates. We hypothesized that introduction of 

a large, positively charged residue such as Lys in LH1, or alterations due to complete 

removal of side chain steric hindrance such as Gly in LH2 could lead to inability of 

binding donor substrates. We therefore generated the LH3 Val80Lys and Val80Gly 

mutants. Both enzyme variants were found to be folded based on analytical gel filtration 

and differential scanning fluorimetry (DSF), and showed lysine hydroxylation activity 

comparable to wild-type LH3 (supplementary Fig S1). Conversely, the mutation resulted 

in significant reduction of both GalT and GlcT activities when the reaction was carried 

out in presence of both donor and acceptor (gelatin) substrates (Fig 4-2, supplementary 

Table S1). Considering that wild-type LH3 is also capable of activating donor UDP-sugar 

substrates and release UDP in absence of the acceptor collagen substrate (“uncoupled” 

activity, as defined in (Scietti et al, 2018)), we investigated the impact of the Val80Lys and 

the Val80Gly mutations also in absence of acceptor substrates. In this case, the 

experiments yielded minor, but significant reduction in the enzymatic activities between 

wild-type and mutant LH3 (Fig 4-2, supplementary Table S1), indicating that the Val80 

residue might be involved in the productive positioning of the donor substrate during 

transfer of the glycan moiety to the acceptor substrate, rather than stabilizing the UDP 

moiety in the catalytic pocket. 
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Figure 4-1 Features of the LH3 glycosyltransferase (GT) domain. 
(A) Cartoon representation of the LH3 GT domain (PDB ID: 6FXR) showing 
the key residues shaping the catalytic site as sticks. The PolyAsp motif (brown) 
and the Glycoloop (cyan) involved in binding of UDP-sugar donor substrates 
are shown. The residues implicated in the catalytic activity and investigated in 
this works are colored, while the residues depicted in grey have already been 
shown to be essential in Mn2+ (purple sphere) and UDP (black sticks) 
coordination. (B) Sequence alignment of human LH1, LH2 and LH3 GT 
domains, highlighting similarities and differences in the amino acid residues 
within the active site. Residues shown in Fig 4-1A are indicated with a triangle. 
Colored boxes indicate the PolyAsp motif (brown) and the Glycoloop (cyan). 
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Figure 4-2 Evaluation of the effect of LH3 GT domain mutations in the GT site 
on glycosyltransferase activities. 
Evaluation of the GalT activity (A) and GlcT activity (B) of LH3 mutants 
compared to the wild-type. Each graph shows the enzymatic activity detected 
in absence (i.e., “uncoupled”) or in presence of gelatin, used as acceptor 
substrate. The plotted data are baseline-corrected, where the baseline was the 
background control. Error bars represent standard deviations from average of 
triplicate independent experiments. 
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To further rationalize the implications of LH3 Val80 in GalT and GlcT activities, we 

crystallized and solved the 3.0-Å resolution structure of the Val80Lys mutant in complex 

with Mn2+, and also obtained its 2.3-Å resolution structure in presence of both Mn2+ and 

the UDP-Glc donor substrate (supplementary Table S2). Overall, both structures 

superimpose almost perfectly with wild-type LH3 for all domains (supplementary Fig S2). 

The structure of the LH3 Val80Lys mutant bound to Mn2+ appeared identical to that of 

wild-type LH3. In both structures, the glycoloop containing Val/Lys80 could not be 

modelled in the electron density due to its high flexibility (supplementary Fig S2B). On 

the other hand, the side chain of the Val80Lys residue could be modelled unambiguously 

in the experimental electron density of the UDP-donor substrate bound structure (Fig 4-

3A). Despite the increased steric hindrance, the mutated Lys80 residue adopted a 

conformation compatible with the simultaneous presence of the UDP-Glc in the catalytic 

cavity. However, similar to what observed for wild-type LH3, the glycan moiety of UDP-

Glc was completely flexible and therefore not visible in the electron density (Fig 4-3A). 

Collectively, these data are consistent with the alteration introduced by the Val80Lys 

mutation, impacting partially on the LH3 glycosyltransferase catalytic activities. 

Figure 4-3 Structural characterization of the LH3 Val80Lys mutant. 
(A) Crystal structure of the LH3 Val80Lys mutant in complex with UDP-glucose and Mn2+. Electron 
density is visible for the mutated lysine and the UDP donor substrate (green mesh, 2Fo-Fc omit 
electron density map, contoured at 1.3 σ). Catalytic residues shaping the enzyme cavity are shown as 
sticks, Mn2+ is shown as purple sphere. Consistent with what observed in the crystal structure of wild-
type LH3, the glucose moiety of the donor substrate is not visible in the experimental electron 
density. (B) Superposition of wild-type and Val80Lys LH3 crystal structures in substrate-free (cyan 
and yellow, respectively) with UDP-glucose bound (marine and orange, respectively) states. Notably, 
the conformations adopted by the side chain of Trp145 upon ligand binding are consistent in the 
wild-type and in the mutant enzyme. As the glycoloop is flexible in substrate-free structures, the side 
chains of Val/Lys80 are visible only in the in UDP-sugar bound structures. 
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The glycoloop is a structural feature found exclusively in the GT domains of LH 

enzymes. It incorporates Trp75, a residue whose aromatic side chain stabilizes the uridine 

moiety of the donor substrate and, together with residue Tyr114 of the DxxD motif (a 

distinguishing feature of LH3 GT domain, shared among LH enzymes, (Scietti et al, 

2018)) “sandwiches” the donor substrate in an aromatic stacking environment (Fig 4-1A). 

Both residues are critical for the LH3 GalT and GlcT enzymatic activities (Scietti et al, 

2018). The conformation adopted by the LH3 glycoloop in the presence of UDP-donor 

substrates is however not accompanied by other significant structural changes in 

surrounding amino acids, with the exception of minor rearrangements of distant residue 

Trp92 (not conserved in other LH isoenzymes (Fig 4-1)), whose bulky side chain 

rearranges pointing towards the aromatic ring of Trp75. Prompted by this observation, 

we mutated this residue to alanine and found that the presence of this variant did not 

alter the folding of the enzyme (supplementary Fig S1A-B) nor its LH enzymatic activity 

(supplementary Fig S1C). Conversely, the mutant showed 40% decrease for both GalT 

and GlcT activities in presence of donor and acceptor substrate compared to LH3 wild-

type (Fig 4-2, supplementary Table S1); the impact of the Trp92Ala mutation on reactions 

in absence of acceptor substrate seemed to affect both activities at similar levels, with 

lower residual GalT (30%) compared to GlcT (40%) (Fig 4-2, supplementary Table S1). 

These findings suggest that LH3-specific long-range interactions in the GT domain may 

contribute to the productive conformations of the glycoloop in donor substrate-bound 

states. 

In UDP-sugar bound structures, the glycoloop contacts a poly-Asp sequence (Asp188-

Asp191, Fig 4-1A); this sequence is partially conserved in LH isoforms lacking 

glycosyltransferase activities (Fig 4-1B). Mutations of Asp190 and Asp191 were reported 

to affect the glycosyltransferase enzymatic activities of LH3 (Wang et al, 2002b). Based 

on LH3 crystal structures, such behaviour is expected, since residues Asp190 and Asp191 

point towards the GalT/GlcT catalytic cavity. Interestingly, superposition of LH3 

molecular structures with GT-A fold glycosyltransferases show that Asp191 caps the N-

terminal end of an α-helix in a highly conserved position, with functional relevance in 

both retaining (Flint et al, 2005; Persson et al, 2001) and inverting enzymes (Charnock & 

Davies, 1999; Pedersen et al, 2000) (supplementary Fig S3, Table 4-1). We designed and 

generated individual alanine mutants for both LH3 Asp190 and Asp191, and found that 

both variants were compatible with folded and functional LH enzymes (supplementary 

Fig S1). When tested for GalT and GlcT activity, both these mutants caused severe 

impairment in activation of donor UDP-sugar (as shown by the strong reduction in 

uncoupled activity to less than 5% using UDP-Glc as substrate) as well as in transfer of 

the sugar moiety to the acceptor substrate (Fig 4-2, supplementary Table S1). However, 

none of these mutations resulted in a complete inactive LH3 GalT nor GlcT 

glycosyltransferase. Collectively, these data point towards an extended involvement of the 
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residues of the poly-Asp repeat, and in particular Asp190 and Asp191, in both the 

positioning and recognition of donor or acceptor substrates. 

 

4.3.2 LH3 shares features with both retaining and inverting glycosyltransferases 

After investigating the amino acid residues involved in stabilization of the UDP moiety of 

donor substrates, we focused on another group of residues within the GT catalytic 

pocket, opposite to the putative position of the flexible sugar rings of the same substrates 

(Fig 4-1A). Many LH3 residues shaping this part of the glycosyltransferase catalytic cavity 

matched catalytic amino acids found in other GT-A type glycosyltransferases (Fig 4-1A, 

supplementary Fig S3) (Ardevol et al, 2016; Lairson et al, 2008). In particular, LH3 

Trp145, a residue located in one of the loops of the GT domain uniquely found in LH3, 

was previously suggested as a possible candidate for modulation of LH3 GalT and GlcT 

activities. This residue was found to adopt different side chain conformations in 

substrate-free and substrate-bound structures, affecting the shape and steric hindrance of 

the enzyme’s catalytic cavity (Scietti et al, 2018); interestingly, nearly identical 

conformational changes were observed when comparing substrate-free and substrate 

bound LH3 Val80Lys structures (Fig 4-3B). Mutating the LH3 Trp145 residue into 

alanine strongly reduced both GalT (6% residual) and GlcT (10% residual) enzymatic 

activities (Fig 4-2, supplementary Table S1), without affecting other enzyme’s properties 

(supplementary Fig S1). This supports previous hypotheses of a “gating” role for Trp145 

in the GT catalytic cavity, assisting the productive positioning of sugar moieties of donor 

substrates for effective transfer during catalysis. Comparison with molecular structures of 

other glycosyltransferases (including distant homologs) highlighted that most structurally-

related enzymes manage to position aromatic side chains from different structural 

elements of their fold in their catalytic cavities. Such structural arrangement is reminiscent 

to that of Trp145 in LH3, but relies on completely different structural features of the 

glycosyltransferase domain. In particular, similar aromatic residues were found in other 

glycosyltransferases such as Tyr186 in LgtC from Neisseria meningitidis, Trp314 in the 

N-acetyllactosaminide α-1,3-galactosyl transferase GGTA1, Trp300 in the histo-blood 

group ABO system transferase, and Trp243 and Phe245 in the two glucoronyltransferases 

B3GAT3 and B3GAT1, respectively (Table 4-1, supplementary Fig S3). This supports 

glycosyltransferases being highly versatile enzymes, displaying an impressive structural 

plasticity to carry out reactions characterized by a very similar mechanism on a large 

variety of specific donor and acceptor substrates. 
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Protein Name Ty
pe 

PD
B 

ID 

catalytic 
base 

residue 

nucleophile 
acceptor 
residue 

corresp. 
LH3 

residue  

reference 
paper  

LgtC - GALACTOSYL TRANSFERASE 
LGTC 

(N. meningitidis) 

reta
inin

g 

1G
A8 

      Persson et al., 
2001 

10.1038/8416
8 

GYG1 - Glycogenin 
(O. cuniculus) 

reta
inin

g 

1L
L2 

  Asp163 Asp191 Gibbons et al., 
2002 

10.1016/S002
2-

2836(02)00305
-4 

mgs - Mannosylglycerate synthase 
(R. marinus) 

reta
inin

g 

2B
O8 

      Flint et al., 
2005 

10.1038/nsmb
950 

GALNT10 - Polypeptide N-
acetylgalactosaminyl transferase 10  

(H. sapiens) 

reta
inin

g 

2D
7R 

  Gln346 Asp190 Kubota et al., 
2006 

10.1016/j.jmb.
2006.03.061 

GGTA1 - N-Acetyllactosaminide -1,3-
galactosyl transferase (R365K) 

(B. taurus) 

reta
inin

g 

5N
RB 

  Glu317 Gln192 Albesa-Jove et 
al., 2017 

10.1002/anie.2
01707922 

ABO - Histo-blood group ABO system 
transferase  
(H. sapiens) 

reta
inin

g 

1L
ZI 

  Glu303 Gln192 Patenaude et 
al., 2002 

10.1038/nsb8
32 

spsA - PROTEIN (SPORE COAT 
POLYSACCHARIDE BIOSYNTHESIS 

PROTEIN SPSA) 

inv
erti
ng 

1Q
GQ 

Asp191   Asp191 Charnock et 
al., 1999 

10.1128/JB.18
3.1.77-85.2001 

MGAT1 - N-acetylglucosaminyl transferase 
I  

(O. cuniculus) 

inv
erti
ng 

1F
OA 

Asp 291   Asp191 Unligil et al., 
2000 

10.1093/embo
j/19.20.5269 

Mfng - Manic Fringe glycosyltransferase  
(M. musculus) 

inv
erti
ng 

2J0
B 

Asp 232   Asp191 Jinek et al., 
2006 

10.1038/nsmb
1144 

B3GAT3 - 
GLUCURONYLTRANSFERASE I 

inv
erti
ng 

1F
GG 

Glu281   Asp190 Pedersen et 
al., 2000 

10.1074/jbc.M
007399200 

B3GAT1 – Galactosylgalactosylxylosyl 
protein 3-beta-glucuronosyltransferase 1 

  1V
84 

      Kakuda et al., 
2004 

10.1074/jbc.M
400622200 

Table 4-1: List of glycosyltransferase enzymes used for comparisons with human LH3. The list 
includes the indication of the catalytic bases and nucleophile residues as proposed in the original 
papers describing the various glycosyltransferases, with the corresponding residue number in 
human LH3 based on structural superpositions. 
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Our previous structural comparisons of ligand-free and substrate-bound LH3 highlighted 

the additional possibility of a concerted mechanism involving conformational changes of 

a non-conserved aromatic residue located on the LH3 surface (Trp148, Fig 4-1), together 

with Trp145 (Scietti et al, 2018). To investigate such possibility, we mutated Trp148 into 

alanine. The mutant enzyme was also found to behave like wild-type LH3 in folding and 

LH activity (supplementary Fig S1). Glycosyltransferase assays showed that this variant 

had reduced GalT (30% residual) and GlcT (50% residual) activities compared to the 

wild-type, in presence of both donor and acceptor substrates (Fig 4-2, supplementary 

Table S1). Despite less pronounced alterations compared to those observed when 

mutating Trp145, these data support possible synergistic mechanisms between long-range 

acceptor substrate recognition on the enzyme’s surface and conformational 

rearrangements in the enzyme’s catalytic site. 

Molecular structures of LH3 in complex with UDP-Glc and Mn2+, showed weak electron 

density near the UDP pyrophosphate group partially compatible with glycan donor 

substrates, likely representative of multiple conformations simultaneously trapped in the 

substrate binding cavity (Scietti et al, 2018). We explored the LH3 catalytic cavity in its 

proximity, looking for additional amino acids potentially critical for catalysis. In particular, 

we searched for residues carrying carboxylic or amide side chains, thus capable of acting 

as candidate catalytic nucleophiles for the formation of a (covalent) glycosyl-enzyme 

intermediate prior to glycosylation of the acceptor substrate (Gloster, 2014). 

In retaining-type glycosyltransferases belonging to the GT-6 family, a conserved 

glutamate has been found to act as a nucleophile (supplementary Fig S3) (Albesa-Jove et 

al, 2017; Coutinho et al, 2003; Gomez et al, 2012; Lombard et al, 2014; Patenaude et al, 

2002). In LH3 structures, we noticed that residues Gln192, Asn165 and Glu141 point 

towards the cavity that accommodates the glycan moiety (Fig 4-1A). We generated Ala 

mutations of all these residues, obtaining in all cases folded functional LH enzymes 

(supplementary Fig S1). When probed for GalT and GlcT activity, we found that both 

the Asn165Ala and the Gln192Ala mutants were less efficient, but still capable, in 

activating UDP-donor substrates and performing sugar transfer to acceptor substrates. 

Conversely, the Glu141Ala mutant was completely deprived of both GalT and GlcT 

activities (Fig 4-2, supplementary Table S1). These data suggest Glu141 as essential for 

catalysis and the surrounding negatively charged pocket composed of Asp190, Asp191, 

Gln192, Asn165 comprising a broad network of amino acids which may concertedly 

assist the LH3 glycosyltransferase activity. 

Proximate to Glu141 in the GalT/GlcT cavity, residue Asn255 is the closest amino acid 

to the UDP phosphate-sugar bond. Despite being fully conserved in LH isoforms (Fig 4-

1B), this residue is not found in any GT-A-type glycosyltransferases with known 

structures to date. The side chain of Asn255 consistently points to a direction opposite to 
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the donor substrate in all LH3 structures (Fig 4-3B, supplementary Fig S2B). We 

wondered whether the side chain amide group might be involved in catalysis, possibly 

through recognition of acceptor substrates given the conformation displayed by this side 

chain. Surprisingly, LH3 Asn255Ala mutants showed that their GalT activity was 

completely abolished, whereas the GlcT enzymatic activity was reduced to 50% (Fig 4-2, 

supplementary Table S1); the protein was properly folded and showed LH activity 

comparable to LH3 wild-type (supplementary Fig S1). These results identify Asn255 as a 

possible critical discriminating residue for the two glycosyltransferase activities of LH3, 

and rule out possible functions for this residue as catalytic nucleophile for retaining-type 

glycosyltransferase mechanisms, given its major impact restricted to the GalT catalytic 

activity. 

4.3.3 Pathogenic LH3 mutations in the LH3 GT domain affect protein folding 

Recently a new pathogenic LH3 mutation, Pro270Leu, has been identified and mapped at 

the interface of the AC and GT domain (Ewans et al, 2019). This residue localizes in a 

loop which is critical for shaping the GT cavity, although given its position it is unlikely 

to play direct roles in catalysis. To better understand the impact of this pathogenic 

mutation on LH3 enzymatic activity, we generated a Pro270Leu mutant. In this case, due 

to very low expression levels, we could not reliably carry out any in vitro investigations. 

Considering the high reproducibility associated to recombinant production of a large 

variety of LH3 point mutants, this result may indicate that this mutation is likely to 

severely impact the overall enzyme stability rather than its enzymatic activity, resulting in 

extremely low protein expression levels in vitro and likely also in vivo. 

4.3.4 Molecular structures of LH3 in complex with UDP-sugar analogs provide 

insights on how glycan moieties are processed inside the LH3 catalytic cavity 

A frequent limitation associated to molecular characterizations of glycosyltransferases is 

the high flexibility of the donor substrate glycan moiety within the catalytic cavity. Such 

limitation becomes even more relevant when the enzyme is capable of processing UDP-

sugar molecules in absence of acceptor substrates, such as in the case of LH3. 

Considering our previous (Scietti et al, 2018) and current co-crystallization results, we 

wondered whether free UDP, the product of the enzymatic reaction, could remain bound 

in the LH3 GT domain with the same efficiency as physiological donor substrates even 

after processing. We therefore compared the binding of free UDP and donor UDP-

sugars using DSF and detected a thermal shift of 3.5 °C for free UDP, compared to a 2-

2.5 °C shift using UDP-sugar substrates (Fig 4-4A). These results suggested that free 

UDP may bind to LH3, likely with even higher affinity than UDP-glycan substrates, and 

that the GalT and GlcT reactions may therefore be affected by product inhibition. To our 

surprise, the increase in thermal stability did not correlate with efficient trapping of the 

reaction product in LH3 molecular structures. Independently from the UDP 
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concentration used in co-crystallization and soaking experiments, we never observed any 

electron density for free UDP, yielding LH3 structures completely identical to ligand-free 

enzyme (supplementary Fig S4A). 

A report from Kivirikko and colleagues (Kivirikko & Myllyla, 1979) suggested that UDP-

glucuronic acid (UDP-GlcA) could act as competitive inhibitor of collagen 

glycosyltransferases. Based on that, UDP-GlcA was used to isolate LH3 from chicken 

embryos preparation (Myllyla et al, 1977; Wang et al, 2002a). However, no follow-up 

biochemical studies could be found in the literature. We used DSF and luminescence-

Figure 4-4 Characterization of UDP-sugar analogs. 
(A) Thermal stability of LH3 wild-type (solid green) using differential scanning fluorimetry (DSF) in 
presence of various Mn2+ and several UDP-sugars. A prominent stabilization effect is achieved in 
presence of the biological donor substrates UDP-galactose (solid blue), UDP-Glucose (solid purple) 
and free UDP (solid black). A milder stabilization effect is also obtained with UDP-xylose (red dash) 
and UDP-glucuronic acid (green dash). (B) Evaluation of GalT and GlcT enzymatic activities of 
LH3 in the presence of increasing concentrations of UDP-GlcA or UDP-Xyl. (C) Crystal structure of 
LH3 wild-type in complex with Mn2+ and UDP-glucuronic acid shows clear electron density for 
UDP (2Fo-Fc omit electron density maps, green mesh, contour level 1.2 σ). The glucuronic acid 
(shown in yellow) can be modelled even if with partial electron density. (D) Crystal structure of the 
LH3 Val80Lys mutant in complex with Mn2+ and UDP-glucuronic acid. Whereas the UDP 
backbone can be modelled in the electron density (black sticks) (2Fo-Fc omit electron density maps, 
green mesh, contour level 1.2 σ), in this case no electron density is present for the glucuronic acid 
(shown in yellow). In addition, the portion of the glycoloop containing the mutated lysine is flexible 
from residue 79 to 83 (shown as cyan spheres). (E) Crystal structure of LH3 wild-type in complex 
with Mn2+ and UDP-xylose. Similar to UDP-GlcA, UDP shows clear electron density (2Fo-Fc omit 
electron density maps, green mesh, contour level 1.2 σ), whereas partial density is shown for the 

xylose moiety (shown in pink). 
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based GalT and GlcT activity assays to investigate whether and how UDP-GlcA could 

affect LH3 enzymatic activity. DSF showed that UDP-GlcA indeed binds weakly to LH3, 

resulting in a thermal shift of 1-1.5 °C (Fig 4-4A), highlighting limited stabilization 

compared to UDP-glycan substrates and free UDP. Enzymatic assays also confirmed the 

competitive inhibition displayed by this molecule (Fig 4-4B), with IC50 values in the 

millimolar range (supplementary Table S1). We also successfully co-crystallized and 

determined the 2.2-Å resolution crystal structure of wild-type LH3 in complex with Mn2+ 

and UDP-GlcA (supplementary Table 2), and found that the inhibitor could efficiently 

replace UDP-sugar donor substrates in the substrate cavity (Fig 4-4C). We observed 

additional electron density for the glucuronic acid moiety of the inhibitor in the enzyme’s 

catalytic cavity, however this density could not be interpreted with a single inhibitor 

conformation. Nevertheless, analysis of the experimental electron density for the 

glucuronic acid moiety unambiguously showed that the inhibitor adopts a “bent” 

conformation: the glycan moiety is deeply buried in the enzyme’s catalytic cavity 

proximate to residues Lys89, Asp190, Asp191, but distant from the residues found critical 

for catalysis, including Trp145, Asn255 and Glu141 (Fig 4-4C), thereby leaving the 

remaining space in the cavity for accommodating acceptor substrates. 

Considering the possible conformations adopted by the glucuronic acid moiety based on 

analysis of the electron density and the close proximity of the glucuronic acid moiety to 

LH3 Val80, we wondered whether the LH3 Val80Lys mutation could interfere with 

inhibitor binding. We therefore co-crystallized and solved the 2.7-Å resolution structure 

of LH3 Val80Lys mutant in complex with UDP-GlcA (supplementary Table S2), and 

surprisingly observed partial displacement of the glycoloop, for which we could not 

observe the typical well defined electron density present in UDP-sugar-bound wild-type 

LH3 structures (Fig 4-4D). At the same time, we could not observe improvements in the 

quality of the electron density for the glucuronic acid moiety, resulting even poorer than 

what observed in wild-type LH3 (Fig 4-4D). This suggests that the intrinsic flexibility of 

the sugar-like moiety is not influenced by specific conformations of the glycoloop, but 

rather by lack of specific protein-ligand interactions that could provide stabilization of the 

sugar ring in a unique structural arrangement. 

The lack of a precise conformation for the glucuronic acid moiety observed crystal 

structures prompted us for a further investigation of another UDP-sugar substrate 

analog, characterized by lack of the carboxylic moiety of UDP-GlcA: UDP-Xylose (UDP-

Xyl). Similar to UDP-GlcA, UDP-Xyl resulted to be a weak inhibitor of LH3 GalT and 

GlcT activities (Fig 4-4A-B), with IC50 in the high micromolar range (supplementary 

Table S1). The 2.0-Å resolution structure of LH3 in complex with Mn2+ and UDP-Xyl 

also showed the inhibitor bound inside the enzyme’s catalytic cavity, with weak electron 

density associated to the sugar moiety suggesting multiple conformations of the xylose 

moiety attached to UDP, similar to what observed for UDP-GlcA (Fig 4-4E). Taken 
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together, these results suggest that the LH3 GT binding cavity is capable of hosting a 

variety of UDP-sugar substrates, and that inhibition likely depends on the reduced 

flexibility (and therefore increased stabilization) of the ligand within the cavity. In this 

respect, we could expect that UDP-sugar analogs strongly interacting with side chains 

proximate to the glycan moieties of UDP-GlcA and UDP-Xyl, may have the potential to 

become powerful inhibitors of LH3 glycosyltransferase activities. 

4.4 DISCUSSION 

Glycosyltransferases are highly versatile, yet very specific enzymes. If carefully inspected, 

they reveal a series of recurrent features that allow their comparative characterization 

even in presence of very low sequence/structure conservation. LH3 has been known for 

long time as a promiscuous enzyme able to exploit both an inverting and a retaining 

catalytic mechanism in vitro for the specific transfer of different sugars to at least two 

different acceptor substrates: the HyK and the GalHyK of collagens (Myllyharju & 

Kivirikko, 2004). Our in vitro investigations highlight multiple areas surrounding the 

glycosyltransferase catalytic site that can be considered as critical “hot spots” for the LH3 

GalT and GlcT activities: the glycoloop, the poly-Asp helix, the acceptor substrate cavity, 

and the region proximate to the UDP-sugar donor substrate (Fig 4-1A). 

LH3 is the only isoform of its family found capable of glycosyltransferase activities, 

however the strong sequence conservation among human LH isoforms cannot be used to 

elucidate the key determinants for this additional function. The GT domain has features 

(such as the DxxD motif, the poly-Asp region, the glycoloop) not found in other 

glycosyltransferases, yet highly conserved within the LH family (Fig 4-1B). Computational 

homology models of homologous LH1 and LH2a/b (Scietti et al, 2019) (supplementary 

Fig S5) support the possibility of UDP-sugar donor binding and processing. To further 

investigate LH enzymes’ GT domains, we focused on the only non-matching residue 

present within the whole amino acid sequence directly surrounding the UDP-donor 

substrate. This residue (Val80 in LH3, corresponding to Lys68 in LH1 and Gly80 in 

LH2a/b) is located in the middle of the glycoloop, in close proximity to the ribose ring of 

the UDP-sugar donor substrate(s). Our data were consistent with this residue being 

important for catalysis, as it assists the positioning of the bound donor substrate and in 

particular the glycan moiety. However, the results also emphasize how sequence 

alterations at this site are not sufficient to justify the lack of GalT/GlcT enzymatic 

activities in homologous LH1/2. We therefore expanded our investigation to the second-

shell environment surrounding the donor substrate, and found that non-conserved LH3 

Trp92 (Leu80 in LH1, Leu92 in LH2a/b) positions its aromatic side chain in a 

conformation that stabilizes the entire glycoloop to facilitate the enzymatic reactions. 

Again, mutating this residue did not lead to full loss of the glycosyltransferase activities. 

This is consistent with the loss of GalT/GlcT functions in LH1 and LH2a/b being 
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associated to a broad set of subtle alterations, possibly involving residues distant from the 

actual enzyme’s catalytic site, likely essential for recognition of collagen acceptor 

substrates. 

Prompted by these observations, we expanded our investigation to the LH3 catalytic 

cavity expected to host the glycan moieties of the UDP-sugar donor substrates and the 

acceptor molecules. Residues Asp190 and Asp191 of the characteristic LH3 poly-Asp 

helix lie in a conserved position compared to other retaining and inverting type GT-A 

(supplementary Fig S3, Table 4-1) and our data indicate that both these carboxylate 

moieties are critical for efficient donor substrate activation and sugar transfer. Although 

residues matching these positions have been proposed to act as catalytic nucleophiles in 

retaining type GT-A (Flint et al, 2005; Persson et al, 2001; Wang et al, 2002b), and as 

catalytic bases in inverting type GT-A (Charnock & Davies, 1999; Pedersen et al, 2000), 

their distances and the relative orientations with respect to UDP-sugar donor substrates 

in the LH3 GT domain (Fig 4-1A) do not support this hypothesis. Nevertheless, these 

residues play critical roles in recognizing and assisting the proper positioning of donor 

UDP-sugar substrates, as shown by their proximity to glycan moieties in LH3 co-crystal 

structures with UDP-sugar analogs (Fig 4-4C-E), a feature observed also in mutagenesis 

studies on other GT-A retaining type glycosyltransferases (Lairson et al, 2004). 

On the opposite site of the UDP-binding pocket, LH3 exhibits a non-conserved loop 

shaping the GT catalytic cavity bearing two aromatic residues, the Trp145 and the Trp148 

that seem to act in a concerted way during catalysis, as suggested by comparisons between 

substrate-free and substrate-bound LH3 molecular structures (Fig 4-1A). Trp145 is 

indispensable for both GalT/GlcT activities: its conformational changes seem to respond 

to the presence and conformational positioning of the donor substrate inside the catalytic 

cavity. Although located in a loop that is uniquely found in LH3, the Trp145 side chain 

matches a site frequently occupied by bulky aromatic residues in other GT-A 

glycosyltransferases that shape a portion of the GT cavity to facilitate donor substrate 

processing and catalysis. This further highlights the versatility of glycosyltransferases, in 

which many different structural features have evolved to specifically recognize distinct 

donor and acceptor substrates, while preserving the ability to carry out the same catalytic 

reaction. The implication in catalysis of the less conserved Trp148 on the surface of the 

GT domain is even more intriguing: this residue seems to coordinately respond to the 

rearrangements of its counterpart Trp145 in the catalytic site, suggesting involvement in 

recognition of the acceptor substrate prior to its access into the GT cavity. Alternatively, 

Trp148 may contribute to long-range stabilizing interactions with collagen molecules, 

while they dock their HyK or GalHyK residues in the acceptor substrate site during the 

GalT or GlcT reactions, respectively. 
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Catalytic nucleophiles have been clearly identified so far only in the retaining-type 

glycosyltransferases belonging to the GT-6 family (Coutinho et al, 2003; Lombard et al, 

2014), such as the α−1,3 galactosyltransferase (GGTA1) where a conserved glutamate is 

found positioned on the β−face of the donor sugar (Albesa-Jove et al, 2017; Gomez et al, 

2012; Patenaude et al, 2002) (supplementary Fig S3). Conversely, extensive structural 

comparisons and mutagenesis experiments have been performed in the O-

galactosyltransferase LgtC from Neisseria menengitidis, focusing on matching residue, 

Gln189 (Lairson et al, 2004). However, the role of this residue as catalytic nucleophile 

was ruled out. This site is occupied by Gln192 in LH3. This residue is next to the poly-

Asp helix, distant from the sites occupied by donor substrates and in an arrangement that 

is not compatible with a direct role in catalysis. However, our mutagenesis data indicate 

that removal of the Gln192 side chain has a strong impact on LH3 glycosyltransferase 

activity. In close proximity, we identified two other amino acid residues potentially 

involved in donor substrate activation or transfer of sugar moieties to the acceptor 

molecule. Both Asn165 and Glu141 point directly towards the glycan moiety of the 

donor substrate (Fig 4-1A). Whilst the Asn165Ala mutation only reduced the 

glycosyltransferase activity by a factor of two (Fig 2, supplementary Table 1), we found 

that Glu141 is essential for both GalT and GlcT activities, as the Glu141Ala mutation 

yields results in a completely inactive LH3 glycosyltransferase (Fig 4-2, supplementary 

Table 1). In LH3, Glu141 adopts a conformation corresponding to Asp130 in the O-

galactosyltransferase LgtC from Neisseria meningitidis, Asp125 in the O-

glucosyltransferase GYG1 from rabbit, and Gln247 in the O-glucosyltransferase GGTA1 

from Bos taurus (supplementary Fig 3, Table 4-1). In LH3, residue Asn255 is the closest 

amino acid to the UDP phosphate-sugar bond, but in crystal structures its side chain 

consistently points to a direction opposite to the donor substrate (Fig 4-1A). When 

inspecting the molecular structures of other GT-A glycosyltransferases, we noticed that 

this residue is not conserved (supplementary Fig 3). On the contrary, this residue is fully 

conserved among human LH isoforms (Fig 4-1B). Strikingly, the LH3 Asn255Ala mutant 

showed a complete loss of GalT activity, but partially preserved the GlcT activity. 

Although the significance of in vivo LH3 GalT activity is uncertain, such activity is clearly 

detectable in vitro (Scietti et al, 2018; Wang et al, 2002a). The ability of Asn255 to 

selectively abolish only LH3 GalT activity highlights how LH3 can promiscuously accept 

and recognize very different acceptor substrates (i.e., collagen HyK versus GalHyK) 

within the same catalytic site and carry out two glycosyltransferase reactions that rely on 

different mechanisms (i.e., inverting GalT and retaining GlcT). Presently, LH3 is the only 

known glycosyltransferase capable of such promiscuity, and our data show that it shares 

numerous features with both retaining and inverting glycosyltransferases. Collectively, 

these results suggest the intriguing possibility that LH3 is not just the ancestor of the 

whole LH family, but may preserve in its sequence features belonging to the evolutionary 

precursors of both retaining and inverting glycosyltransferases. 
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In addition, the present work provides a set of 3D structures of LH3 in complex with 

UDP-sugar analogs, which work as mild inhibitors (Fig 4-4). Despite the high flexibility 

observed for the glycan moieties of the bound molecules, the new molecular structures 

presented provide valuable insights for structure-based drug development of inhibitors of 

LH3 GalT/GlcT enzymatic activities. These molecules may give the spark to innovative 

therapeutic strategies against pathological conditions characterized by excess collagen 

glycosylations, such as osteogenesis imperfecta (Raghunath et al, 1994). 

Together with the mutagenesis scanning of the entire GT catalytic site, our work provides 

a comprehensive overview of the complex network of shapes, charges and interactions 

that enable LH3 GalT and GlcT activities. 
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CONCLUSIONS 

Collagen lysine modifications are highly conserved PTMs essential for the correct 

biosynthesis of collagen and deposition of ECM. The first modification is lysine 

hydroxylation, catalyzed by LH enzymes. In humans, three isoforms are found: LH1, 

LH2a/b and LH3, sharing approximately 70% of sequence identity. LH3 is the only 

multifunctional enzyme, bearing lysyl hydroxylase but also additional glycosyltransferase 

activities, absent in LH1 and LH2. Malfunctions of LH enzymes leading to abnormal 

collagen PTMs correlate with severe connective tissue disorders and cancer 

metastatisation. The biological and medical relevance of this enzyme family arose our 

interest. Thus, we firstly established innovative strategies of large-scale LH recombinant 

protein expression using mammalian expression systems, and developed enzymatic assays 

to monitor lysine hydroxylation activity on different substrates. This thesis reports on the 

successful results obtained about the comprehensive biochemical and structural 

characterization of human full-length human LH3, and also about some follow-up 

studies. We have determined the 3D structure of LH3 isoform, highlighting 

unprecedented features of this multi-functional enzyme. Using site-directed mutagenesis, 

we identified the crucial features essential for catalysis in both catalytic sites of LH3. 

Collectively, our results provided a structural framework to describe the multiple 

functions of LH3, and shed light on some of the molecular mechanisms causing collagen-

related diseases involving human lysyl hydroxylases. The high sequence conservation 

allowed using the 3D structure of LH3 as template for the entire LH family, and enabled 

the in silico homology modelling prediction of LH1 and LH2 structures. Furthermore, it 

paved the way to structure-based drug design studies, now in progress in the lab. The 

results presented in this PhD thesis also provide critical insights into the LH3 

glycosyltransferase activities, and expand the available knowledge for the development of 

collagen GalT/GlcT inhibitors. These insights will be instrumental for the manipulation 

of LH3 protein functions and donor substrate specificity for biomedical applications, 

including possible development of antimetastatic agents. Our studies will advance the 

understanding of the molecular genotype-phenotype correlations associated to several 

connective tissue disorders, such as Osteogenesis Imperfecta, Ehlers-Danlos syndrome, 

Bruck syndrome and Dystrophic Epidermolysis Bullosa. However, some pieces of the 

puzzle are missing, in particular regarding the in vivo significance of the molecular insights 

obtained: it is unclear how and why only a small percentage of lysines in fibrillar collagens 
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are modified through hydroxylation and glycosylation. The elongated structure of LH3 

together with the double activity suggests a potential processive catalytic mechanism, 

however no clear experimental evidence is currently available and the existence of the 

LH3 GalT activity must be confirmed in order to validate such hypothesis. Also, we still 

do not know much about the exact localization of LH3 enzyme, as well as about the 

functional role of its secretion. Future studies, encouraged by the results presented in this 

work, should aim at the in vivo characterization of LH3 and the other LH isoforms. 



 

 

 


