Received: 20 January 2019
DOI: 10.1002/hbm.24627

Revised: 1 May 2019 Accepted: 2 May 2019

RESEARCH ARTICLE WILEY

Neural processing of social interaction: Coordinate-based
meta-analytic evidence from human neuroimaging studies
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Abstract

While the action observation and mentalizing networks are considered to play com-
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neural processing of: (a) social interactions, (b) individual actions by the action obser-
vation network, and (c) mental states by the mentalizing network. Conjunction ana-
lyses and direct comparisons unveiled overlapping and specific regions among the
resulting maps. We report quantitative meta-analytic evidence for a “social interac-
tion network” including key nodes of the action observation and mentalizing net-
works. An action-social interaction-mentalizing gradient of activity along the
posterior temporal cortex highlighted a hierarchical processing of interactions, from
visuomotor analyses decoding individual and shared intentions to in-depth inferences
on actors' intentional states. The medial prefrontal cortex, possibly in conjunction
with the amygdala, might provide additional information concerning the affective
valence of the interaction. This evidence suggests that the functional architecture
underlying the neural processing of interactions involves the joint involvement of the
action observation and mentalizing networks. These data might inform the design of
rehabilitative treatments for social cognition disorders in pathological conditions, and
the assessment of their outcome in randomized controlled trials.
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action observation network, activation likelihood estimation, amygdala network, mentalizing
network, meta-analysis, mirror network, social cognition rehabilitation, social interaction

network

1 | INTRODUCTION

involves the mirror (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996) and

mentalizing (“theory of mind”; Frith & Frith, 2006) networks.

Decoding others' intentions, to understand and predict their behavior,
is a core component of social cognition. Despite increasing evidence
on the neural bases of social understanding (Arioli, Crespi, & Canessa,
2018; Spunt & Lieberman, 2012a), it is still debated how intentions,
and particularly social intentions in interactive contexts, are neurally
represented, and whether this process recruits dedicated brain struc-

tures (Frith, 2007). Most of the relevant evidence in this respect

The former includes areas recruited both when observing and
when performing actions, that is, the posterior portion of inferior
frontal gyrus, dorsal and ventral premotor cortex, inferior parietal lob-
ule (IPL), superior parietal lobule, and intraparietal sulcus (IPS), along-
side the posterior portion of the superior temporal sulcus (pSTS)
(Caspers, Zilles, Laird, & Eickhoff, 2010; Molenberghs, Cunnington, &
Mattingley, 2012). A subset of its key fronto-parietal and occipito-
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temporal nodes, collectively termed “action observation network”
(e.g., Gardner et al., 2015), is considered to embody a neural represen-
tation of action meaning, allowing its direct understanding via auto-
matic simulation routines (Buccino, Vogt, et al., 2004; Buccino, Lui,
et al., 2004; Gallese & Sinigaglia, 2011). In contrast, the mentalizing
network is recruited when people reflect on others' mental states
without directly attending their biological motion or available visual
cues, for example, when reading stories or watching cartoons, and in
false-belief tasks (Wimmer & Perner, 1983). This type of process
involves the medial precuneus and temporoparietal junction (TPJ), as
well as ventromedial and dorsomedial prefrontal cortex (Saxe, 2006).
The role of these networks in intention understanding revolves
around three related notions, that is, action, goal and intention, which
can be ordered hierarchically according to their level of abstractness
(Hamilton & Grafton, 2006; Van Overwalle & Baetens, 2009). A dis-
tinction can thus be made among the processing of simple movements
(e.g., opening and closing fingers), immediate action goal (often requir-
ing the motion sequence to interact with an object, e.g., grasping a
glass), the final action goal (e.g., grasping the glass to drink), intention
(reflecting the “why” of the action, e.g., grasping a glass to drink in
order to rehydrate after exercise), up to a social intention (when the
“why” of the action involves other individuals, e.g., grasping a glass to
make a toast in a party). The mirror/action observation and
mentalizing networks play different roles in processing intentions
along this hierarchy (Grafton, 2009; Van Overwalle & Baetens, 2009).
The former underpins the meaning of simple movements, actions
and their associated goals, embodied in their neural representations
along the fronto-parietal networks underlying action organization
(Rizzolatti & Luppino, 2001), which are automatically activated when
attending others' actions and their goals (Fogassi et al., 2005; lacoboni
et al., 2005). The mentalizing network is recruited when others' inten-
tions cannot be automatically derived from available visuomotor cues,
and must thus be inferred in terms of internal mental states such as
thoughts, desires, and beliefs (Van Overwalle & Baetens, 2009).
Considerable evidence on the neural processing of individual
actions has supported a functional segregation between the comple-
mentary roles of the action observation and mentalizing networks,
driven by, respectively, (a) biological actions versus verbal/abstract
information; (b) implicit versus explicit tasks; and (c) processing “what”
and “how” a person is doing (behavioral states) versus “why” (mental
states) (Chiavarino, & Humphreys, 2012; Spunt, Kemmerer, &
Adolphs, 2016; Spunt & Lieberman, 2012a, 2012b). However, this
segregation conflicts with their joint activation when processing social
interactions, regardless of stimuli type (Arioli et al., 2018; Centelles,
Assaiante, Nazarian, Anton, & Schmitz, 2011; lacoboni et al., 2004;
Kujala, Carlson, & Hari, 2012). Their concurrent engagement might
reflect the greater complexity of understanding interactions, which,
compared with individual actions, would require both the recognition
of joint actions, and a representation of their multiple actors' mental
states (Catmur, 2015). We have recently shown that the relative acti-
vation and connectivity pattern of the action observation and
mentalizing networks indeed depend on different dimensions

expressed by interactions, such as their degree of cooperativity and

affectivity, respectively (Arioli, Perani, et al., 2018; Canessa et al.,
2012; Proverbio et al., 2011). Within a network for “social intention
understanding” activated regardless of these dimensions, observed
cooperativity increases connectivity between pSTS and both SPL and
vPMC, while affectivity increases connectivity between pSTS and
vmPFC (Arioli, Perani, et al., 2018). Therefore, the complexity of inter-
actions reflects in divergent but interconnected neural pathways asso-
ciated with the bottom-up visuomotor processing of action meaning
and the top-down attribution of affective/mental states, depending
on the weight of specific dimensions underlying shared action goals.

Alongside fMRI evidence of a brain network dedicated to the
visual processing of social interactions in the primate brain (Sliwa &
Freiwald, 2017), these considerations highlight the need to take into
account the specific features of interactions, compared with individual
actions, when discussing the available evidence on the neural bases of
decoding social intentions (Quadflieg & Koldewyn, 2017). Further
insights into this issue might come from coordinate-based meta-ana-
lyses, that is, a quantitative unbiased approach unveiling the areas
that are consistently activated in a particular class of paradigms (Laird
et al., 2005).

On this basis, we performed a quantitative meta-analysis of the
available neuroimaging literature to unveil: (a) the regions specifically
associated with the neural decoding of social interactions, over and
beyond the processing of single individuals' actions and mental states
by the action observation and mentalizing networks, respectively and
(b) the shared and specific contribution of these networks to such
processing. We first expected to replicate previous meta-analytic evi-
dence on the role of the mirror/action observation (Caspers et al.,
2010; Molenberghs et al., 2012) and mentalizing (Bzdok et al., 2012;
Molenberghs, Johnson, Henry, & Mattingley, 2016; Schurz, Radua,
Aichhorn, Richlan, & Perner, 2014; van Veluw & Chance, 2014) net-
works in processing others' actions versus mental states, respectively.
Based on our previous evidence (Arioli, Perani, et al., 2018), we addi-
tionally predicted an involvement of both networks in processing
interactions, that is, to observe overlapping and specific brain regions
between a “social interaction network” and both the action observa-

tion and mentalizing networks.

2 | MATERIALS AND METHODS

2.1 | Rationale of the meta-analytic approach

Despite the well-known contribution of the action observation and
mentalizing networks to social understanding (Arioli, Perani, et al.,
2018), quantitative meta-analytic evidence is still needed to identify
the most consistent findings and thus overcome the limitations inher-
ent in single neuroimaging studies. We thus aimed to identify the
brain regions consistently associated with the neural processing of
interactions, over and beyond the processing of single individuals'
actions and mental states by the action observation and mentalizing
networks, respectively. To this purpose, we used activation likelihood
estimation (ALE), a coordinated-based meta-analytic approach using

the Montreal Neurological Institute (MNI) coordinates of peak
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locations to summarize and integrate published findings (Turkeltaub,
Eden, Jones, & Zeffiro, 2002).

We defined “social interaction” a situation in which two or more
persons act together, as opposed to single individuals' behaviors tradi-
tionally ascribed to the action observation and mentalizing networks
for the processing of their actions or mental states, respectively. We
focused, however, on the neural bases of representing interactions,
rather than those associated with actual behavior. Therefore, we
included in a first ALE analysis the studies addressing a passive expo-
sure to interactions (vs. single individuals' motor or mental activity),
regardless of positive-negative valence, experimental paradigm or
stimulus type (e.g., videos, pictures, auditory, etc.) (Section 2.2.1).

Based on previous related evidence (Arioli, Perani, et al., 2018;
Centelles et al., 2011; lacoboni et al., 2004; Kujala et al., 2012), we
expected a common, although possibly non-exhaustive, involvement
of the action observation and mentalizing networks in the neural
processing of interactions. This hypothesis is grounded in recent evi-
dence for their combined role in this process, suggesting that fronto-
temporo-parietal areas in charge of action recognition might provide
sensorimotor information supporting and constraining inferential pro-
cesses of intention understanding by the mentalizing network
(Catmur, 2015: Arioli, Perani, et al., 2018). To quantify this contribu-
tion in terms of the overlap between the neural processing of interac-
tions and either the action observation or mentalizing networks
(Catmur, 2015), we performed two additional ALE analyses addressing
the neural processing of single individuals' actions or mental states,
respectively. Since most fMRI studies on social interaction are limited
to visual processing without an explicit engagement, we used the
same constraints when selecting studies on individual action, that is,
we focused on action representation rather than motor mirroring. As
with the decoding of interactions, however, we aimed to investigate
the neural bases of processing an abstract high-order representation
of actions or mental states, transcending specific kinds of stimuli. To
this purpose, the “action observation” and “mentalizing” data sets
included experiments addressing the neural bases of these processes
regardless of the experimental paradigm or stimulus type (e.g., videos,
pictures or verbs, and pictures or verbal stories, respectively)
(Sections 2.2.2 and 2.2.3). The studies included in the three meta-
analyses did not differ with respect to the presence of stimuli involv-
ing object-directed actions or an object representation (Table S1a-c).

Based on current prescriptions for ALE meta-analyses (Eickhoff
et al.,, 2016), we aimed to include at least 17-20 experiments (con-
trasts) in each data set, to achieve sufficient power for moderate
effects and ensure that results would not be driven by single experi-
ments. To this purpose, for each data set, we selected a specific pro-
cess of interest and the types of contrast/experiment fitting our
research question (Section 2.2). A stringent selection of the studies
fulfilling these criteria resulted in a comparable number of experi-
ments for each data set, while keeping this number close to 30 in
order to ensure enough power for reliable results (Muller et al., 2018).
All the inclusion criteria for each data set were selected by the first

author, and then checked by the last author. This procedure, entailing

a double check by two independent investigators, was aimed to

reduce the chances of a selection bias (Muller et al., 2018).

2.2 | Literature search and study selection

A systematic online database search was performed in December
2017-February 2018 on PubMed (https://www.ncbi.nlm.nih.gov/
pubmed/), Google scholar (https://scholar.google.it/), and Neurosynth
(http://neurosynth.org/), by entering various combinations of relevant

search items as detailed below.

2.21 | Social interaction

Papers pertaining to the first ALE analysis were initially identified

» o« » o«

using the following terms: “social interaction,” “social scene,” “social

» o« » » o«

intention,” “social perception,” “social observation,” “watching social,”
“social action,” and “social stimuli.” This first search was expanded by
looking for (a) authors of related articles, (b) similar articles, or
(c) review papers, and by carefully examining (a) the references of
each retrieved paper, and (b) the studies that have cited each
retrieved paper. The selection criteria for this search procedure led to

select only:

1. Published studies written in English.

2. Empirical fMRI studies, while excluding review articles and behav-
joral studies, as well as those employing other techniques to
ensure comparable spatial and temporal resolution.

3. Studies including non-clinical and drug-free participants, to pre-
vent possible differences in brain activation associated with neu-
ropsychiatric disease or pharmacological manipulations.

4. Studies with adult subjects (age range: 18-55 years).

5. Studies reporting the MNI coordinates of the activations, as well
as detailed information about results, tasks, and subjects.

6. Studies reporting whole-brain activation coordinates, rather than
results limited to regions of interest (ROIls). A prerequisite for
coordinate-based meta-analyses is indeed that convergence
across experiments is tested against a null hypothesis of random
spatial associations across the entire brain under the assumption
that each voxel has the same a priori chance of being activated
(Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012). Studies based on ROI
analyses should therefore be excluded from meta-analyses (Muller
et al., 2018).

7. Studies investigating brain activity related to the processing of
social interactions, as opposed to single individuals' motor or men-
tal activity. To this purpose, we selected only specific types of
contrast in which the subject passively attends interactions (vs. no
interaction), and that were clearly aimed to elicit a representation
of interactions and underlying social intentions, over and beyond
single individuals' behavior, that is:

a. interaction > individual action (i.e., only one acting person);
b. interaction > parallel action (i.e., presence of more than one

acting person, but without interaction);
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TABLE 1

Foci

Contrast

Stimuli

Sub (mean age)

Title

Journal

Authors (year)

N

12

Social interactions > other

Videos

15 sub (mean age: 23.6)

Personality traits predict brain

Scientific Report -

24 Van den Stock, Hortensius,

activation and connectivity when

witnessing a violent conflict

Nature

Sinke, Goebel, and de
Gelder (2015)

25  Vrticka, Sander, and

18

Social interactions > other

Photographs from the

19 sub (mean age: 24.82)

Effects of emotion regulation

Neuropsychologia

IAPS database

strategy on brain responses to the
valence and social content of

visual scenes

Vuilleumier (2011)

ARIOLI ano CANESSA

16

Photographs Social interactions > other

48 sub (mean age: 20)

Individual differences in the

Cerebral Cortex

26 Woagner, Kelley, and

spontaneous recruitment of brain
regions supporting mental state
understanding when viewing

natural social scenes

Heatherton (2011)

18

Social interactions > other

Stories

expl: 13 sub (mean age: 25.15)

Understanding intentions in social

Journal of Cognitive

27 Walter et al. (2004)

interaction: The role of the

Neuroscience

anterior paracingulate cortex

15

Social interactions > other

Stories

exp2: 12 sub (mean age: 24.75)

TOT SUB:
612

TOT FOCI
454

c. interaction > stimuli without persons (e.g., fixation cross, land-
scapes, or objects).
8. Studies entailing a passive exposure to interaction, rather than an
active involvement in real online interactions.
9. Studies addressing human interactions, that is, real persons
(in videos, photographs, or verbal stories) or stimuli representing

human beings (such as point light displays).

Although most of the selected studies already compared brain
activity associated with processing interaction versus individual
action, here we moved this comparison to the meta-analytic level to
unveil consistent commonalities/differences transcending study-
specific experimental manipulations. To this purpose, we included
studies fulfilling the above criteria regardless of: (a) type of stimuli
(e.g., video, audio, picture, verbal, etc.), and (b) the nature of interac-
tion (e.g., positive, negative, affective, dance, sport, games, etc.). Our
aim was indeed to pool across different experimental paradigms to
ensure both generalizability and consistency of results, within the
above constraints inherent in our research question (Radua & Mataix-
Cols, 2012).

This procedure led to include in the ALE meta-analysis 27 previ-
ously published studies (Table 1), resulting from 28 experiments (indi-
vidual comparisons reported) with 612 subjects and 454 foci.
Importantly, the inclusion of multiple contrasts/experiments from the
same set of subjects can generate dependence across experiment
maps and thus decrease the validity of meta-analytic results. To pre-
vent this issue, we adjusted for within-group effects by pooling the
coordinates from all the relevant contrasts of a paper into one experi-
ment (Turkeltaub et al., 2002).

2.2.2 | Action representation

Our search for the coordinates associated with the action observation
network started from two previously published meta-analyses by
Caspers et al. (2010) and Molenberghs et al. (2012). Within the
BrainMap database (Laird et al., 2009), we selected these works
because they explicitly address action representation by the mirror
network in healthy adults. We then expanded our search for other
potentially relevant studies by carefully examining both the studies
quoting, and those quoted by, each of the two meta-analyses.

While the methodological selection criteria for the included stud-
ies are the same as above (1-6), here we selected only studies
reporting brain activations interpreted by the authors as related to the
perception or representation of human individual actions. To this pur-
pose, we selected only specific types of contrast in which the subject
passively attends to stimuli depicting human actions by single individ-
uals, and that were aimed to elicit brain activations interpreted by the

authors in terms of action representation, that is:

1. human action > static (someone who is not acting);
human action > nonhuman action (e.g., object motion);
3. human action > sensory aspects without persons and/or action

(e.g., scrambled images, objects, context, or abstract sentences).
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Importantly, we aimed to assess the spatial overlap between a net-
work associated with the processing of interactions and the action obser-
vation network associated with perceiving or representing individual
actions. To ensure the specificity of this analytical approach, we excluded
from this ALE analysis the studies addressing other functions ascribed to
the mirror network, such as action imitation (i.e., action observation for
subsequent replication), action execution, or an affective resonance to
others' sensory or emotional experiences (e.g., Canessa et al., 2009;
Canessa, Motterlini, Alemanno, Perani, & Cappa, 2011; Keysers et al,,
2004, Singer et al., 2004; Wicker et al., 2003).

We included studies fulfilling these criteria regardless of stimuli
type (e.g., video, audio, and sentences) to ensure the generalizability
of results. This procedure led to include in the ALE meta-analysis
34 previously published studies (Table 2), resulting from 34 experi-
ments (individual comparisons reported) with 598 subjects and
712 foci. As with the first ALE analysis, we adjusted for within-group
effects by pooling the coordinates from all the relevant contrasts with
the same subjects into one experiment (Turkeltaub et al., 2002).

Importantly, 12 out of 27 papers included in the meta-analysis on
social interaction used “individual action” as an explicit baseline condi-
tion. However, only one of them reported activations resulting from
the “individual versus social” contrast (involving the precentral gyrus,
medial prefrontal cortex, and cerebellum), while the others reported
either no information on this contrast (8/12) or no significant results
(3/12) (Table S2). Therefore, these studies were not used to investi-
gate the regions associated with the action observation network.

2.2.3 | Mental state representation

We searched for the coordinates associated with mentalizing starting
from four previously published meta-analyses by Molenberghs et al.
(2016), van Veluw and Chance (2014), Spreng, Mar, and Kim (2009),
and Bzdok et al. (2012). Within the BrainMap database (Laird et al.,
2009), we selected these works because they explicitly address the
representation of others' mental states by the mentalizing network in
healthy adults. We then expanded our search for other potentially rel-
evant studies by carefully examining both the studies quoting, and
those quoted by, each of the four meta-analyses.

While the methodological selection criteria for the included stud-
ies are the same as above (1-6), here we selected only studies
reporting brain activations interpreted by the authors as related to
making inferences on single individuals' mental states. To this purpose,
we selected only specific types of contrast that were aimed to elicit
brain activations interpreted in terms of “mentalizing network” under-
pinning the representation or attribution of mental states, that is:

1. inferences on beliefs > inferences on physic or perceptual aspects
other than mental states;

2. attribution of mental states > gender inferences (based on the
“reading the mind in the eyes” task [Baron-Cohen, Wheelwright,
Hill, Raste, & Plumb, 2001]).

In particular, we included only the studies which:

1. investigated the representation of a single person's mental states;

2. isolated mental states, via a “mental versus nonmental” comparison;

3. entailed no difference between the two conditions in terms of
“social” processing. That is, studies in which an interaction, if pre-
sent, involves both the “mental” and control conditions.

Moreover, we excluded studies that addressed mentalizing during
real interactions.

Importantly, we aimed to assess the spatial overlap between a
network associated with the processing of interactions and the sec-
tors of the mentalizing network specifically associated with the repre-
sentation or attribution of single individuals' mental states. We thus
excluded studies addressing other facets of mentalizing, such as
empathy and emotional processing, moral cognition or self-represen-
tations. To ensure the specificity of this analytical approach, we addi-
tionally excluded studies investigating the neural correlates of
processing false beliefs versus true beliefs, or jokes versus literal sen-
tences, since they both involve the processing of mental states. We
also excluded contrasts which, rather than isolating the neural
processing of mental states, compare different facets of such
processing, for example, desires versus beliefs, cognitive versus affec-
tive mentalizing, or beliefs versus preferences.

We included studies fulfilling these criteria regardless of stimuli type
(e.g., photographs, vignettes, and sentences) to ensure the generalizabil-
ity of results. This procedure led to include in the ALE meta-analysis
29 previously published studies (Table 3), resulting from 30 experiments
(individual comparisons reported) with 652 subjects and 450 foci. As
with the other ALE analyses, we adjusted for within-group effects by
pooling the coordinates from all the relevant contrasts with the same

subjects into one experiment (Turkeltaub et al., 2002).

2.3 | Activation likelihood estimation

We performed different ALE analyses, using the GingerALE software
(Eickhoff et al., 2009), to identify consistently activated regions for all the
three domains under investigation, that is, processing (a) interactions,
(b) individual actions (action observation network), and (c) individual men-
tal states (mentalizing network).

For these analyses, activation foci were initially interpreted as the
centers of three-dimensional Gaussian probability distributions, to
capture the spatial uncertainty associated with each individual coordi-
nate. All coordinates were reported in the MNI space. The three-
dimensional probabilities of all activation foci in a given experiment
were then combined for each voxel, resulting in a modeled activation
(MA) map. The union of these maps produces ALE scores describing
the convergence of results at each brain voxel (Turkeltaub et al.,
2002). To distinguish “true” convergence across studies from random
convergence (noise), the ALE scores are compared with an empirically
defined null distribution derived from a permutation procedure
(Eickhoff et al., 2012). This null distribution reflects a random spatial
association between experiments, with the within-experiment distri-
bution of foci being treated as a fixed property. Thus, a random-

effects inference is invoked, by focusing on the above-chance
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convergence between different experiments, and not on the clus-

§ tering of foci within a specific experiment. From a computational
8 S '6 N standpoint, deriving this null hypothesis involved sampling a voxel
N < - at random from each of the MA maps and taking the union of
the resulting values. The ALE score obtained under this assump-
§ tion of spatial independence was recorded, and the permutation
§ - procedure iterated 10! times to obtain a sufficient sample of the
"g 4 ALE null distribution. The “true” ALE scores were tested against
é % the ALE scores obtained under the null distribution and
E ‘E '*% thresholded at a false discovery rate (FDR) of p < .05 and cluster
LS) é é size of 100 mm? (Laird et al., 2005). For exploratory purposes, we
also assessed voxels surviving the FDR correction in the absence

of a cluster-based threshold.
The second step was to unveil the common and specific contribu-
§ § tions of action and mental state representation to the neural processing
= E E of interactions. To this purpose, direct comparisons and conjunction ana-
§ § § lyses were performed, within GingerALE, to identify commonalities and
differences between: (a) action observation and mentalizing maps;
g = (b) interaction and action observation maps; and (c) interaction and

S § mentalizing maps.

. % % For each of these contrasts, a conjunction image was created, using
°g° § § the voxel-wise minimum value of the included ALE images, to display the
é % % § similarity between the data sets (Eickhoff et al., 2011). In the same analy-
;u’i g é lé § sis, two ALE contrast images were created for each of the data sets, and

compared by directly subtracting one input image from the other. To cor-
rect for sampling errors, GingerALE creates such data by polling the foci
in each data set and randomly dividing them into two new groupings
equivalent in size to the original data sets. An ALE image is created for
each new data set, then subtracted from the other and compared with
the true data. Permutation calculations are then used to compute a
voxel-wise p-value image indicating where the values of the “true data”
fall within the distribution of values in any single voxel. To simplify the

interpretation of ALE contrast images, significant ALE subtraction scores

pretend play in which one object
is represented as another
and SMA proper during action

observation: Effects of

Differential activation of pre-SMA
instructions

Neural correlates of observing

Title

were converted to Z scores. For contrast analyses, clusters were
thresholded at p < .05 FDR corrected and cluster size of 100 mm?® (Laird

progressive study number; Obj = object; Obs = observation; sub = subjects.

et al.,, 2005).
(]
&
— E 3 | RESULTS
g z g i
" z
- = g 3.0.1 | Neural processing of individual actions by the
(1]
i & action observation network
© 8
% I5) Activations associated with the neural processing of human individ-
U wn
o - § ual actions encompassed the regions typically associated with the
= = - N . o .
3 % § g action observation network (Figure 1a, Table 4). These included the
> B S
£ E § zg = <|F posterior portion of the inferior frontal gyrus, as well as the ventral
= -
S f -5?\3 8 E § premotor cortex and precentral gyrus, bilaterally. Further activations
= £ E y . . . . .
= E é o i@ involved the superior parietal lobule and IPS bilaterally, alongside
N 5 S S 2 - . :
w 2 2 N & the left IPL. The occipito-temporal and inferior-middle temporal cor-
— >
2 > 9 < g tex, extending in the pSTS, were also bilaterally associated with this
™
= 2 network.
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3.0.2 | Neural processing of individual mental states
by the mentalizing network

The neural processing of another's mental states involved consistent
activation in the typical nodes of the mentalizing network (Figure 1b,
Table 5). These included the dorsomedial and ventromedial prefrontal
cortex, as well as the posterior cingulate cortex and the TPJ

bilaterally.

3.0.3 | Neural processing of social interaction

The neural processing of interactions was associated with consistent
activations in the dorsomedial and ventromedial prefrontal cortex
alongside posterior cingulate cortex, as well as in the right premotor
cortex and left cerebellum (Figure 1c, Table 6). Further activations
encompassed the posterior portion of middle temporal cortex and the

pSTS, extending into the TPJ, alongside the amygdala, bilaterally.

3.0.4 | Common activations to processing individual
actions and mental states

Conjunction analyses unveiled a significant overlap between the
meta-analytics maps of the action observation and mentalizing net-
works in a cluster encompassing the right pSTS and TPJ (Figure 2a,
Table 7).

3.0.5 | Common activations to processing individual
actions and social interaction

Processing interactions and human individual actions was associated
with consistent common activations encompassing the right premotor
cortex, alongside the posterior portion of middle temporal cortex
extending into the pSTS bilaterally (Figure 2b,d, Table 8).

3.0.6 | Common activations to processing individual
mental states and social interaction

Processing interactions and another's mental states reflected in con-
sistent common activations in the dorsomedial prefrontal and poste-
rior cingulate cortex, as well as in the TPJ bilaterally (Figure 2c,d,
Table 9).

3.0.7 | Differential activations associated with
processing individual actions versus mental states

Compared with representing another's mental states, the neural
processing of human individual actions was associated with stronger
bilateral activity in the typical nodes of the action observation net-
work, that is, ventral premotor cortex, IPL, and IPS, alongside the pos-
terior portion of inferior and middle temporal cortex plus the

cerebellum (Figure 2a, Table 7).

3.0.8 | Differential activations associated with
processing mental states versus individual actions

The neural processing of another's mental states, compared with
human individual actions, reflected in stronger activity in the typical
nodes of the mentalizing network, that is, dorsomedial and ventrome-
dial prefrontal cortex, posterior cingulate cortex and the TPJ bilater-
ally (Figure 2a, Table 7).

3.0.9 | Differential activations associated with
processing individual actions versus social interaction

The neural processing of human individual actions, compared with
interactions, was associated with stronger activity in the IPL bilaterally
(but with a left hemispheric dominance), alongside the left ventral

premotor and inferior temporal cortex (Figure 2b, Table 8).

3.0.10 | Differential activations associated with
processing social interaction versus individual actions

Compared with representing human individual actions, the neural
processing of interactions reflected in stronger activations in the dors-
omedial and ventromedial prefrontal cortex, posterior cingulate cortex
and left pSTS (Figure 2b, Table 8).

3.0.11 | Differential activations associated with
processing mental states versus social interaction

The neural processing of another's mental states, compared with
interactions, was associated with stronger bilateral activity in the TPJ
(Figure 2c, Table 9).

3.0.12 | Differential activations associated with
processing social interaction versus mental states

Compared with representing another's mental states, the neural
processing of interactions reflected in stronger bilateral activity in the pos-

terior portion of middle temporal cortex and pSTS (Figure 2c, Table 9).

4 | DISCUSSION

We performed three quantitative meta-analyses to investigate the
contribution of action and mental state representation to the neural
processing of social interaction. This goal was pursued via the ALE
approach, highlighting both common and specific regions associated
with the neural processing of interactions and either single individuals'
actions or mental states by, respectively, the action observation or

mentalizing networks.
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4.1 | Neural processing of individual actions and
mental states

First, our results confirmed previous meta-analytic evidence on the dis-
tinct neural bases of the action observation and mentalizing systems.
Processing human individual actions, compared with mental states, was
associated with stronger activity in a bilateral fronto-temporo-parietal
network encompassing the ventral premotor and inferior frontal cortex,
alongside the alPS and IPL, and the cerebellum (Caspers et al., 2010;
Molenberghs et al., 2012) (Figures 1d and 2). This network is considered
to receive higher order perceptual inputs from other regions highlighted
by our analysis, such as the occipito-temporal and posterior inferior-
middle temporal cortex, extending into the pSTS containing polysensory
neurons that respond to biological motion (Barraclough, Xiao, Baker,
Oram, & Perrett, 2005). The lack of evidence for the cingulate gyrus, pre-
viously associated with the vicarious processing of emotional and
somatosensory experiences (Fan, Duncan, de Greck, & Northoff, 2011;
Lamm & Singer, 2010; Molenberghs et al., 2012), is likely explained by
our focus on the neural bases of “action representation,” which lead to
exclude activations associated with empathy-related processes. The
reverse contrast highlighted the typical nodes of the mentalizing net-
work, that is, the dorsomedial and ventromedial prefrontal cortex plus
the posterior cingulate cortex in the midline, alongside TPJ bilaterally
(Bzdok et al., 2012; Molenberghs et al., 2016; van Veluw & Chance,
2014) (Figures 1d and 2).

These networks are considered to provide different contributions to
the processing of social intentions. Understanding the goal of observed
actions involves a well-known fronto-parietal network mediating the
access to an experiential knowledge in terms of their motor conse-
quences, with no need for a conceptual interpretative neural mechanism
(Rizzolatti & Sinigaglia, 2010). Instead, the lack of visuomotor cues
requires intentions to be inferred in terms of internal mental states such
as thoughts, desires, and beliefs (Van Overwalle & Baetens, 2009). While
the computational mechanisms underlying mentalizing are still debated
(e.g., Saxe & Kanwisher, 2003 vs. Mitchell, 2008), possible cues into this
issue come from the ubiquitous involvement of multiple brain areas
spanning the right pSTS and TPJ in a variety of social cognitive processes
(Bahnemann, Dziobek, Prehn, Wolf, & Heekeren, 2010; Yang, Rosenblau,
Keifer, & Pelphrey, 2015), i.e., perceiving biological motion (Beauchamp,
Lee, Haxby, & Martin, 2002, 2003; Peelen, Wiggett, & Downing, 2006),
mentalizing (Schneider, Slaughter, Becker, & Dux, 2014; Wolf, Dziobek, &
Heekeren, 2010), and making moral judgments (Heekeren et al., 2005;
Prehn et al., 2008). These data have suggested a two-stage model in
which the right pSTS underpins an initial parsing of visuospatial informa-
tion into meaningful discrete elements, whose communicative signifi-
cance for interpreting others' behavior involves more complex
computations associated with hierarchically increasingly activity in the
TPJ “mentalizing” node (Bahnemann et al., 2010; Redcay, 2008).

This hypothesis fits both with the present meta-analytic data on
the common involvement of the right pSTS —bordering the TPJ— in
action observation and mentalizing (Figure 2), and with our recent
connectivity evidence highlighting this region as the input of visual

social information, modulating activity in both networks while

(a) Action observation network

e

p<0.05 corrected

FIGURE 1 Action observation, mentalizing, and social interaction
brain networks. From top to bottom, the figure reports the brain
structures consistently associated with processing others' individual
actions (action observation network, red), others' mental states (theory
of mind [ToM], or mentalizing, network, blue) and social interactions
(interaction network, green), either in isolation or superimposed onto the
same brain render and slices. All the reported activations survived a
statistical threshold of p < .05 corrected for multiple comparisons.

A = action observation; | = interaction; T = theory of mind (mentalizing)
[Color figure can be viewed at wileyonlinelibrary.com]

observing social interactions characterized by different degrees of
cooperativity or affectivity (Arioli, Perani, et al., 2018). This combined
evidence supports the role of pSTS in decoding different kinds of
intentions inherent in others' actions (Gao, Scholl, & McCarthy, 2012;
Yang et al., 2015), via distinct but interrelated pathways connecting
this region to (a) the key nodes of the action observation network for
the bottom-up visuomotor processing of action meaning, and (b) the
ventromedial prefrontal cortex for the top-down attribution of
affective/mental states (Arioli, Perani, et al., 2018). We thus expected
the pSTS to be included in the meta-analytic ALE map associated with
processing interactions.

4.2 | The social interaction network

The neural processing of interactions involved regions known to be

associated with representing individual actions and mental states,
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TABLE 4 Neural bases of processing others' actions

Cluster # Volume (mm?) X y
1 6,576 50 4
~26 -8
_52 10
_38 -2
_46 6
48 -4
2 4,360 -36 -52
-38 -38
2,664 46 -64
4 2,144 -48 -76
-42 -70
-50 -64
5 1,976 48 2
6 992 34 -48
7 568 -60 -24
8 304 -50 -38
9 240 46 14
10 232 24 -60
11 152 56 -32
12 104 52 -46

Abbreviation: pSTS = posterior sector of superior temporal sulcus.

z Label

36 Left frontal precentral gyrus

54 Left frontal precentral gyrus

20 Left inferior frontal gyrus

46 Left middle frontal gyrus

24 Left frontal precentral gyrus

50 Left frontal precentral gyrus

56 Left superior parietal lobule

46 Left inferior parietal lobule

-2 Left middle temporal gyrus/pSTS

Left inferior temporal gyrus

4 Left middle occipital gyrus

10 Left middle temporal gyrus/pSTS

46 Right frontal precentral gyrus

52 Right precuneus

36 Left inferior parietal lobule

26 Left insula

24 Right inferior frontal gyrus

66 Right superior parietal lobule

22 Right parietal operculum-supramarginal gyrus
8 Right superior temporal gyrus

Note. From left to right, the table reports the size (in mm?3), stereotaxic coordinates of local maxima and anatomical labeling of the clusters consistently

associated with representing others' actions (action observation network).

TABLE 5 Neural bases of processing others' mental states
Cluster # Volume (mm?) x
1 2,856 -52
2 2,464 54
3 1,392
4 864
0
5 344 -8
6 328 -8

Abbreviations: TPJ, temporoparietal junction.

y z Label
-58 22 Left TPJ
-52 20 Right TPJ
56 30 Left medial frontal gyrus
-58 28 Left posterior cingulate
-54 36 Left precuneus
-58 18 Left posterior cingulate
52 0 Left medial frontal gyrus

Note. From left to right, the table reports the size (in mm?3), stereotaxic coordinates of local maxima and anatomical labeling of the clusters consistently
associated with representing others' mental states (mentalizing, or ToM, network).

alongside the amygdala bilaterally (Figure 1d). Conjunction analyses
and direct comparisons provided formal evidence for commonalities
and differences between this set of regions and either the action

observation or mentalizing networks (Figure 2).

421 | Social interaction and action observation
networks

Processing individual actions (vs. interactions) was specifically associ-

ated with bilateral activity in the occipito-temporal cortex, IPL, and

ventral premotor cortex (Figure 2). The opposite comparison
highlighted the dorsomedial and ventromedial prefrontal cortex,
alongside the posterior cingulate cortex and left TPJ (Figure 2). Com-
mon activations to the two networks encompassed the posterior mid-
dle temporal cortex and pSTS bilaterally, alongside the right premotor
cortex (Figure 2). As previously discussed, the common involvement
of areas associated with representing action meaning (Caspers et al.,
2010; Molenberghs et al., 2012) might reflect the visuomotor
decoding of shared motor goals in social interactions (Arioli, Perani,
et al., 2018).
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TABLE 6 Neural bases of processing social interactions

Cluster # Volume (mm?) X

1 1,800 -46
2 1,736 50
3 944 6
4 392 2
5 384 -42
6 384 _54
7 336 44
8 240 54
9 168 46
10 144 -20
11 112 20
12 112 2

y z Label
—66 14 Left middle temporal gyrus
-70 8 Right middle temporal gyrus
54 20 Right medial frontal gyrus
-58 32 Left cingulate gyrus
-48 -22 Left cerebellum
-48 14 Left superior temporal gyrus
2 42 Right frontal precentral gyrus
20 26 Right middle frontal gyrus
-58 16 Right middle temporal gyrus
-8 -18 Left amygdala
-6 -20 Right amygdala
54 -20 Right medial frontal gyrus

Note. From left to right, the table reports the size (in mm?3), stereotaxic coordinates of local maxima and anatomical labeling of the clusters consistently

associated with processing social interactions (social interaction network).

This hypothesis is supported by recent fMRI data from monkeys
engaged in the visual processing of interactions (Sliwa & Freiwald,
2017), in which planned contrasts allowed to ascribe the recruitment
of classical visuomotor areas to the decoding of agents' actions.
Instead, medial prefrontal regions displayed a selective response to
interactions. The spatial overlap between these regions and the
human mentalizing network suggested a role for such “exclusively
social interaction network” in drawing inferences about the intentional
states underlying the observed interactions, which in turn might have
represented a potential evolutionary pressure to the development of
mentalizing skills (Sliwa & Freiwald, 2017). We thus assessed whether
available evidence from published studies supports the existence of
“exclusively social” brain activations also in the human brain, or rather
the neural processing of interactions can be reduced to the joint
engagement of the mirror and mentalizing networks. Based on our ini-
tial evidence that processing interactions recruits regions beyond the
action observation network, we thus performed further analyses to
assess whether such additional activations can be fully ascribed to the
mentalizing network, or they rather involve regions exceeding both

networks.

4.2.2 | Social interaction and mentalizing networks

Mentalizing and processing interactions were associated with consis-
tent common activations in the dorsomedial prefrontal cortex and
posterior cingulate cortex, alongside the TPJ bilaterally (Figure 2).
While all these areas have been associated with inferences on others'
mental states (van Overwalle, 2009; Van Overwalle & Baetens, 2009),
Sliwa and Freiwald's (2017) data from the monkey brain strongly sug-
gest a role of these regions, and particularly the dorsomedial prefron-
tal cortex, in decoding shared social intentions over and beyond the
visuomotor analyses associated with the action observation network
(Arioli, Perani, et al., 2018; lacoboni et al., 2004; Van Overwalle &
Baetens, 2009).

Compared with interactions, processing another's mental states
selectively involved the TPJ bilaterally (Figure 2), which lesion-based
studies highlight as a key node of the mentalizing network in the human
brain (Samson et al., 2004). The reverse comparison highlighted the pos-
terior middle temporal cortex and pSTS bilaterally (Figure 2), likely under-
pinning the deeper visuomotor analyses required by processing joint,
compared with individual, actions. While the outcome of such analyses
might provide the mentalizing network with sensorimotor information
supporting and constraining inferential processes of shared intention
understanding (Arioli, Perani, et al., 2018; Catmur, 2015), these results
seem to provide limited evidence for “exclusively social” areas, exceeding
the contribution of action observation and mentalizing networks, in the

human brain.

4.3 | The neural processing of social interaction

The present meta-analytic data suggest that a putative “social interaction
network” can be largely reduced to the joint contribution of the action
observation and mentalizing networks in representing action meaning
and others' mental states, respectively. This evidence allows to refine
previous hypotheses, based on studies addressing the processing of sin-
gle individuals, that the two networks underpin complementary social
cognitive functions (Van Overwalle & Baetens, 2009).

The involvement of both networks in processing interactions is
strongly suggested by the progression of activity, along the posterior
lateral temporal cortex, associated with representing individual actions
(bilateral inferior-middle temporal cortex plus the right pSTS; red),
social interactions (bilateral middle temporal cortex and pSTS exten-
ding into TPJ; green), and mental states (bilateral TPJ; blue) (Figures 1
and 2). This parcellation fits with Redcay (2008) two-stage model, dis-
tinguishing between the analysis of biological motion in the right pSTS
(associated with parsing a stream of visuospatial information) and sub-
sequent mentalizing in the bilateral TPJ (Bahnemann et al., 2010).

Moreover, our data suggest that this model might be extended to
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(a) Action observation and ToM

(d) Action observation and ToM contribution to
Interaction network

p<0.05 corrected

FIGURE 2 Commonalities and differences across action
observation, mentalizing, and social interaction brain networks. From
top to bottom, the figure depicts with different colors the common
and specific brain structures across the action observation and
mentalizing networks (a), action observation and interaction networks
(b), as well as mentalizing and interaction networks (c). In the bottom
panel, the three networks are depicted onto the same brain render
alongside the common voxels across the interaction network and
either the action observation (yellow) or mentalizing (cyan) networks.
All the reported activations survived a statistical threshold of p < .05
corrected for multiple comparisons. A = action observation;

| = interaction; T = theory of mind (mentalizing) [Color figure can be
viewed at wileyonlinelibrary.com]

include the visual processing of interactions as a further component, par-
tially overlapping, at the anatomical and functional levels, with both the
action observation and mentalizing networks. The progressive transition
from action-specific activity in the posterior middle temporal cortex
(Figure 2) to overlapping action-interaction (yellow) and finally
interaction-specific (green) activations in the pSTS might underpin the
transition from the visuomotor decoding of the single agents' actions to
processing the “how” and “what” of the observed interaction (Spunt &
Lieberman, 2012a, 2012b). Then, in the TPJ, the spatial overlap between
activations associated with processing interactions and mentalizing
(Figure 2) might reflect the progressive transition from the visuomotor
decoding of action-related intentional states to intention reading in terms
of mental states detached from visuomotor information. Once relayed to

the TPJ (Figures 1 and 2), a key node for detaching from one's own

attentional perspective (Mitchell, 2008), this hierarchical processing
might promote further in-depth inferences on the social actors' inten-
tional states (i.e., in terms of the “why” of the [inter]action; Chiavarino
et al,, 2012; Vogeley, 2017; Spunt & Lieberman, 2012a, 2012b). The out-
put of this process is then likely relayed to the dorsomedial prefrontal
cortex (Arioli, Perani, et al., 2018), which has been shown to play a role in
forming impressions of people (Ferrari et al., 2016) and in their accuracy
(Spunt & Adolphs, 2015; Wagner, Kelley, Haxby, & Heatherton, 2016).
Such a process would be expected to include the amygdala, which
both neuroimaging (Bickart, Wright, Dautoff, Dickerson, & Barrett, 2011,
Schultz, 2005) and lesional (Bickart, Dickerson, & Barrett, 2014; Emery
et al., 2001; Rutishauser, Mamelak, & Adolphs, 2015) studies highlight as
a key modulator of social perception and behavior. This hypothesis was
supported by the inclusion of amygdala among the structures recruited
by processing interactions (Figure 1). However, despite the lack of previ-
ous evidence for its involvement in the action observation (Caspers et al.,
2010; Molenberghs et al., 2012) or mentalizing (Bzdok et al., 2012; van
Veluw & Chance, 2014) networks, direct comparisons failed to highlight
a significantly stronger involvement of the amygdala in processing inter-
actions than individual actions or mental states. Therefore, its possible

In

“exclusively social” engagement remains speculative, and in need of addi-
tional evidence, at this stage. It is noteworthy that this research question
reflects current debates on the domain specificity versus generality of
amygdala computations in social cognition, due to inconsistent data
supporting its specific involvement in the automatic (and even subliminal)
processing of social stimuli (Ohman, 2002) versus its generic role in
processing salient stimuli (Herry et al., 2007; Whalen, 2007). This debate
has suggested the existence of a specific “amygdala” network associated
with a more general function, that is, processing the current value of
stimuli based on their salience and behavioral relevance in terms of affili-
ation or aversion (Bickart et al., 2014). This domain-general role would
explain its involvement in a variety of functions and contexts, including
judgments of trustworthiness and approachability (Adolphs, 2010) which
are inherent in the processing of social interactions (Kujala et al., 2012).
Overall, a hierarchical neural processing of social interactions and
intentions seems thus to involve the progressive transition from
visuomotor decoding to mentalizing in the posterior lateral temporal
cortex (Figures 1d and 2), plus further contributions by specific nodes
of the action observation and mentalizing networks in the right
premotor and medial prefrontal cortex, respectively. Alongside recent
evidence on the role of the latter region in the visual processing of
interaction in the monkey brain (Sliwa & Freiwald, 2017), these data
strengthen the hypothesis that this stimulus might have represented
an evolutionary pressure toward the development of mentalizing
skills. Our results thus highlight several directions for future studies
aiming to address the specific roles played by these brain regions in

normal and impaired social cognition.

4.4 | Conclusions and limitations

We reported novel meta-analytic evidence of a network of areas
associated with the processing of social intentions, including key

nodes of the well-established action observation and mentalizing
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TABLE 7 Common and specific regions across the action observation and mentalizing networks

Cluster # Volume (mm?®) X y z Label

Action observation and mentalizing

1 24 54 —-46 16 Right superior temporal gyrus
2 16 52 —44 18 Right TPJ
3 8 54 —-48 14 Right superior temporal gyrus
Action observation > mentalizing
1 5,280 -45 -71 -0 Left cerebellum. Posterior declive
2 3,824 49 —-67 -3 Right cerebellum. Posterior declive
3 3,384 -37 —49 58 Left inferior parietal lobule
-38 -42 46 Left inferior parietal lobule
4 1,784 32 -51 54 Right inferior parietal lobule
5 1,304 -55 -1 39 Left frontal precentral gyrus
6 376 49 -2 41 Right frontal precentral gyrus
7 376 -30 -5 48 Left middle frontal gyrus

Mentalizing > action observation

1 2,896 -52 -58 22 Left TPJ

2 2088 55 -54 21 Right TPJ

3 1,360 -1 55 25 Left medial frontal gyrus
4 848 2 -57 29 Left posterior cingulate
5 360 -7 -58 18 Left posterior cingulate
6 336 -8 52 -0 Left medial frontal gyrus

Abbreviation: TPJ, temporoparietal junction.
Note. From left to right, the table reports the size (in mm?), stereotaxic coordinates of local maxima and anatomical labeling of the clusters which were
commonly (top) and specifically (bottom) associated with the action observation and mentalizing networks.

TABLE 8 Common and specific regions across the action observation and social interaction networks

Cluster # Volume (mm?) X y z Label

Social interaction and action observation

1 1,040 48 -70 6 Right middle occipital gyrus

2 688 -48 -68 10 Left middle temporal gyrus/pSTS
3 336 44 2 42 Right frontal precentral gyrus

4 8 -54 -46 10 Left middle temporal gyrus/pSTS
5 8 54 -44 14 Left superior temporal gyrus
Social interaction > action observation

1 944 3 56 18 Left medial frontal gyrus

2 464 —44 -67 16 Left middle temporal gyrus/pSTS
3 392 2 -59 32 Left precuneus

4 112 1 54 -19 Left medial frontal gyrus

Action observation > social interaction

1 1,264 —42 -37 47 Left parietal supramarginal gyrus
2 984 39 -36 46 Right inferior parietal lobule

3 728 =55 3 29 Left frontal precentral gyrus

4 728 -54 -29 32 Left inferior parietal lobule

5 120 -53 -70 -2 Left inferior temporal gyrus

Abbreviation: pSTS = posterior sector of superior temporal sulcus.
Note. From left to right, the table reports the size (in mm?), stereotaxic coordinates of local maxima and anatomical labeling of the clusters which were
commonly (top) and specifically (bottom) associated with the action observation and social interaction networks.
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TABLE 9 Common and specific regions across mentalizing and social interaction networks
Cluster # Volume (mm?) X y z Label
Social interaction and mentalizing
1 208 -58 30 Left cingulate gyrus
-56 36 Left precuneus
2 128 58 20 Left medial frontal gyrus
3 40 -46 -62 18 Left middle temporal gyrus
4 16 -56 -50 18 Left TPJ
5 8 —48 -62 16 Left TPJ
6 8 48 -58 18 Right TPJ
7 8 2 56 22 Left medial frontal gyrus
8 8 54 24 Left medial frontal gyrus
9 8 4 56 24 Right medial frontal gyrus
Social interaction > mentalizing
1 904 -47 -70 10 Left middle temporal gyrus/pSTS
2 784 48 -73 2 Right inferior occipital gyrus
54 -74 8 Right middle occipital gyrus
Mentalizing > social interaction
1 1,016 -52 -61 24 Left TPJ
2 464 57 -56 22 Right TPJ

Abbreviations: pSTS = posterior sector of superior temporal sulcus; TPJ, temporoparietal junction.
Note. From left to right, the table reports the size (in mm?), stereotaxic coordinates of local maxima and anatomical labeling of the clusters which were
commonly (top) and specifically (bottom) associated with the mentalizing and social interaction networks.

networks for representing action meaning and others' mental states,
possibly in conjunction with an amygdala network underlying evalua-
tions on affective salience. While fitting with available evidence on
the specific role played by the action observation and mentalizing net-
works in processing individual agents' actions versus mental states,
the present results highlight their joint contribution in the analysis of
a qualitatively different stimulus such as social interaction.

In the light of the centrality of social cognition in several neuro-
psychiatric disorders (DSM-5), characterizing the neural bases of this
key ability of the social brain entails both scientific and translational
implications. On the one hand, even in healthy young individuals the
lack of interaction, that is, loneliness, has been shown to reflect in
increased connectivity within the cingulo-opercular network associ-
ated with tonic alertness (Layden et al., 2017). Moreover, social cogni-
tive functions can be disrupted in neurological (e.g., frontotemporal
dementia or amyotrophic lateral sclerosis; Cerami et al, 2014a,
2014b; Crespi et al., 2014, 2016, 2018; Dodich, Cerami, Crespi, et al.,
2016; Dodich, Cerami,
(e.g., schizophrenia; Fujiwara, Yassin, & Murai, 2015) and developmen-
tal (e.g., autism; Fett, Shergill, & Krabbendam, 2015) disorders, as well
as after acute brain damage (e.g., stroke or traumatic brain injury;

lannaccone, et al., 2016), psychiatric

Henry, von Hippel, Molenberghs, Lee, & Sachdev, 2016). Moreover,
such deficits are critical predictors of functional outcomes because
they affect the ability to form and sustain interpersonal relationships,
thereby eliminating the benefits that interactions have for patients or
at-risk individuals (Steptoe, Shankar, Demakakos, & Wardle, 2013). An

advancement of knowledge on the neural bases of social cognition is

thus crucial in several respects, including the development of novel
tools for assessing related abilities in pathological conditions
(e.g., Dodich et al., 2014, 2015).

The present evidence is limited by the relatively low number of
contrasts included in each data set, which, although in line with cur-
rent recommendations for ALE meta-analyses (Eickhoff et al., 2016;
Muller et al., 2018), did not allow to compare the regions underlying
the processing of different types of interaction. In the trade-off
between sensitivity and specificity, however, we opted for stringent
criteria which, while fulfilling well-established prescriptions, might
allow to unveil subtle differences between largely overlapping neural
computations. Further limitations of this study reflect those inherent
in the relevant literature, and particularly the frequent use of different
types of stimuli, that is, verbal versus visual, when addressing the neu-
ral bases of processing mental states versus individual actions and
interactions, respectively. The present data should thus be considered
to provide a preliminary evidence which will require further support
from novel empirical studies.

While the fast growth of this research field will likely help filling
these gaps, the present results strengthen the notion of a joint
involvement of the action observation and mentalizing networks in
social intention understanding (Arioli, Perani, et al., 2018; Centelles
et al., 2011; lacoboni et al., 2004; Kujala et al., 2012), and pave the
way for further in-depth investigations on the brain mechanisms
underlying the processing of social interaction. These insights may
also prove useful in future studies assessing the status of the interac-

tion network as a neural marker of impaired social cognition, or the
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effects of cognitive remediation procedures (Kurtz & Richardson,
2012), in different pathological conditions (Henry et al., 2016).
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