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ABSTRACT 

Seismic risk assessment models have played a pivotal role in guiding decision-making for a 
wide variety of  purposes in recent decades. Ideally, these models would rely on empirical 
ground motion, damage and loss data derived from historical seismic events. However, due 
to the limited availability of  such data, risk models resort to analytical frameworks where 
future earthquake scenarios, with some annual occurrence rates, are realistically simulated. 
Despite the progress that has been facilitated by new tools and increased data availability 
in recent years, several modeling decisions that are still routinely adopted require some 
scrutiny.  

Firstly, the rate of  occurrence of  events in these models is derived from the historical and 
instrumental seismicity catalogues that are declustered, i.e. earthquake clusters (in time and 
space) are detected and only one event in each cluster (classified as the mainshock) is kept, 
while the remaining events (aftershocks, foreshocks and other triggered events) are 
disregarded. The process of  declustering yields (or at least it should) catalogues of  
independent events that enable the analysts to use the relatively simple Poisson process for 
modeling the occurrence of  future events. However, it has been shown several times that 
all events in the cluster, and not just the mainshock, can damage structures and humans, 
hence disregarding them may result in the underestimated hazard and risk estimates at the 
site(s) of  interest. 

In this thesis, we accounted for all earthquake events regardless of  whether they are 
classified as mainshocks or not. For modeling realistic earthquake sequences, we used the 
Epidemic-Type-Aftershock-Sequence (ETAS) model, which is considered the state-of-the-
art approach for generating realistic earthquake clusters. With this tool we investigated 
whether the spatial and temporal characteristics of  earthquake sequences generated by 
crustal faults are region dependent or whether these characteristics share some 
commonality across regions. If  the former, the modeling of  seismic sequences in a new 
region would require a region-specific study; if  the latter, on the other hand, the simulation 
of  sequences could be done based on the statistical tools that have been derived using 
empirical data from regions with the same tectonic environment. With these premises, we 
examined the ability of  ETAS to reproduce the statistical features of  long-term historical 
seismicity in Italy in two different regions. Our findings revealed variations in the temporal 
and spatial distributions (namely, in the parameters’ values defining the ETAS model) of  
the two regions that we argue are not intrinsic dissimilarities in earthquake sequence 
phenomena but can be attributed to the scarcity of  observed sequences within the given 
period. Our argument was made stronger by a further investigation that revealed that the 



 

 

ETAS model calibrated based on Central Italy data modeled the occurrence of  earthquake 
sequences in Croatia and Turkey that matches the observed seismicity better than the ETAS 
model calibrated using the local data. These results suggest that in regions with an 
insufficient number of  active seismic sequences during the earthquake catalogue period, 
adopting ETAS parameter values from a well-constrained region, such as Central Italy, 
could be a defensible approach. 

Secondly, in addition to the potential underestimation of  seismic hazard due to disregarding 
non-mainshock events, the conventional mainshock-only risk assessment approach 
implicitly assumes that the bulk of  risk is caused by mainshocks. In other words, events 
beyond the mainshock do not contribute to causing additional structural damage and losses. 
Another simplification in these models is that buildings experiencing mainshocks of  
different clusters over time are always in an undamaged state. In essence, traditional seismic 
risk models suppose that buildings are repaired after each event, an operation that often 
does not happen, leaving already damaged structures in a more vulnerable state. This issue 
of  decreased strength of  already damaged buildings is even more important when one 
considers all events in a sequence, whose interarrival time is so short that repair actions are 
usually not feasible. In the rare instances when these models consider damage accumulation 
due to multiple shocks, the engineering demand parameter (EDP) employed for modeling 
damage estimation and derivation of  the fragility curves is peak-displacement-based. This 
EDP, which is not monotonically increasing with multiple shocks, fails to accurately capture 
the progression of  damage. In this study, we delved into the progression of  damage in 
reinforced concrete (RC) columns, that fail in flexure, shear, and flexure-shear modes. 
Leveraging experimental data, we calibrated a modified Park and Ang damage index that is 
more suitable for modeling damage progression. Additionally, we scrutinized different 
modeling assumptions, validating them against experimental data. Our findings 
demonstrate that, while further validation with experimental data is warranted, the 
proposed EDP effectively identifies distinct damage states. As a result, it emerges as a good 
candidate for developing fragility and vulnerability curves within the context of  clustered 
seismicity risk assessment. 

Thirdly, another key ingredient for obtaining an accurate risk estimate is the link between 
seismic hazard at the site of  interest and structural fragility. When fragility curves are 
analytically derived, a hazard-consistent selection of  ground motions to be utilized to run 
nonlinear response history analysis on the structure(s) of  interest is necessary. This 
selection process acts as a crucial interface between seismology and engineering, and the 
importance of  utilizing record sets consistent with the seismic hazard at the site of  interest 
has been highlighted clearly in numerous past studies. However, to enforce hazard-
consistency in record selection one would need to have a large pool of  strong ground 
motions at one’s disposal.  This is hardly ever the case. As a consequence, the analyst is 
usually left with the suboptimal option of  augmenting the set by scaling weaker ground 
motions, an operation that potentially may bias the structural response estimates. Our 
investigation into this practice revealed that scaling ground motions does not cause 
statistically significant differences in structural response estimates, provided that hazard 
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consistency is carefully maintained in ground motion record selection, for example by using 
methods such as the Conditional Spectrum. Another practical issue that in real-life 
applications often hinders an effective hazard-consistent selection of  ground motions is 
the excessive computational burden that follows. Even when a sufficient number of  ground 
motions is available for extracting hazard-consistent sets, the computational demands of  
running numerous analyses can be substantial, especially for complex numerical models of  
structures. To help address this practical issue, we explored the optimal number of  ground 
motion runs needed to derive fragility curves, aiming to balance computational efficiency 
with the accuracy of  the resulting estimates. 

Fourthly, given our objective of  including all earthquakes and the deterioration of  the 
structural integrity due to previous shocks into the risk assessment analysis, the derivation 
of  site- and building-specific damage-state-dependent fragility curves is a must. To this end, 
we investigated the issue of  selecting aftershock ground motions that are consistent with 
the mainshocks that may be experienced at the site of  interest. This step is important for 
the analytical derivation of  robust damage-state-dependent fragility curves. The importance 
of  the aftershock record selection, however, did not receive as much attention in the 
literature as the mainshock one. To that end, we investigated different approaches for 
mainshock-aftershock record selection, comparing them with the results of  the so-called 
“direct analysis”, which can be considered as the benchmark. The direct analysis consists 
of  simulating many years of  clustered seismicity and selecting appropriate ground motions 
for each event characterized by a magnitude, M, and, source-to-site distance, R, regardless 
of  whether such events are foreshocks, mainshocks or aftershocks. We showed that for the 
particular case that we considered, choices made in the aftershock record selection are not 
as critical as those related to the mainshock record selection. 

This thesis emphasizes the significance of  incorporating clustered seismicity into seismic 
risk models. The consideration of  only mainshocks in risk assessment is simply not tenable 
anymore, as made abundantly clear by the many sequences that occurred all over the world 
in the past decades. This work addresses various critical issues pertaining to seismic hazard, 
fragility, and record selection, bridging existing gaps and laying the groundwork for future 
research. 
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ABSTRACT (IT) 

Negli ultimi decenni i modelli di valutazione del rischio sismico hanno svolto un ruolo 
fondamentale nel guidare il processo decisionale per un'ampia varietà di scopi. Idealmente, 
questi modelli dovrebbero basarsi su dati empirici relativi al moto del suolo, ai danni e alle 
perdite derivanti da eventi sismici storici. Tuttavia, a causa della limitata disponibilità di tali 
dati, i modelli di rischio ricorrono a metodi analitici in cui vengono realisticamente simulati 
scenari futuri di terremoto con tassi di occorrenza annuali stimati. Nonostante i progressi 
compiuti negli ultimi anni grazie a nuovi strumenti e a una maggiore disponibilità di dati, 
diverse decisioni di modellazione che vengono ancora adottate di routine richiedono uno 
scrutinio più accurato.  

In primo luogo, il tasso di occorrenza degli eventi in questi modelli è derivato dai cataloghi 
di sismicità storica e strumentale che vengono declusterizzati, cioè vengono individuati 
cluster di terremoti (nel tempo e nello spazio) e viene mantenuto solo un evento in ogni 
cluster (classificato come mainshock), mentre i restanti eventi (aftershock, foreshock e altri 
eventi innescati) vengono trascurati. Il processo di declustering produce (o almeno 
dovrebbe) cataloghi di eventi indipendenti che consentono agli analisti di utilizzare il 
processo di Poisson, relativamente semplice, per modellare il verificarsi di eventi futuri. 
Tuttavia, è stato più volte dimostrato che tutti gli eventi del cluster, e non solo la scossa 
principale, possono danneggiare strutture e persone, per cui non tenerne conto può portare 
a sottostimare le stime di pericolosità e di rischio nel sito (o nei siti) di interesse. In questa 
tesi, abbiamo considerato tutti gli eventi sismici, indipendentemente dal fatto che siano 
classificati come mainshocks o meno. Per modellare sequenze di terremoti realistiche, 
abbiamo utilizzato il modello Epidemic-Type-Aftershock-Sequence (ETAS), considerato 
lo stato dell'arte per la generazione di cluster di terremoti. Con questo strumento abbiamo 
indagato se le caratteristiche spaziali e temporali delle sequenze di terremoti generate dalle 
faglie crostali dipendono dalla regione o se queste caratteristiche sono comuni a tutte le 
regioni. Nel primo caso, la modellazione delle sequenze sismiche in una nuova regione 
richiederebbe uno studio specifico per la regione; nel secondo caso, invece, la simulazione 
delle sequenze potrebbe essere effettuata sulla base degli strumenti statistici derivati dai dati 
empirici di regioni con lo stesso ambiente tettonico. Con queste premesse, abbiamo 
esaminato la capacità di ETAS di riprodurre le caratteristiche statistiche della sismicità 
storica a lungo termine in Italia in due diverse regioni. I nostri risultati hanno rivelato 



 

 

variazioni nelle distribuzioni temporali e spaziali (cioè nei valori dei parametri che 
definiscono il modello ETAS) delle due regioni che, a nostro avviso, non sono dissimmetrie 
intrinseche nei fenomeni di sequenza sismica, ma possono essere attribuite alla scarsità di 
sequenze osservate in un determinato periodo. La nostra argomentazione è stata rafforzata 
da un'ulteriore indagine che ha rivelato che il modello ETAS calibrato sulla base dei dati 
dell'Italia centrale ha modellato il verificarsi di sequenze sismiche in Croazia e Turchia che 
corrispondono alla sismicità osservata meglio del modello ETAS calibrato utilizzando i dati 
locali. Questi risultati suggeriscono che nelle regioni con un numero insufficiente di 
sequenze sismiche attive durante il periodo del catalogo sismico, l'adozione dei valori dei 
parametri ETAS da una regione ben vincolata, come l'Italia centrale, potrebbe essere un 
approccio difendibile. 

 

In secondo luogo, oltre alla potenziale sottostima della pericolosità sismica dovuta al fatto 
che non si tiene conto degli eventi che non siano il mainshock, l'approccio convenzionale 
di valutazione del rischio legato alle sole scosse di mainshock presuppone implicitamente 
che la maggior parte del rischio sia causato soltanto da quelle scosse. In altre parole, gli 
eventi al di là del mainshock non contribuiscono a causare ulteriori danni strutturali e 
perdite. Un'altra semplificazione in questi modelli è che gli edifici che subiscono scosse di 
mainshock di diversa entità nel corso del tempo sono sempre in uno stato integro. In 
sostanza, i modelli di rischio sismico tradizionali suppongono che gli edifici vengano 
riparati dopo ogni evento, operazione che spesso non avviene, essendo le strutture già 
danneggiate in realtà in uno stato più vulnerabile. Il problema della diminuzione della 
resistenza degli edifici già danneggiati è ancora più importante quando si considerano tutti 
gli eventi di una sequenza, il cui tempo tra un evento e il successivo è di solito così breve 
che le azioni di riparazione non sono fattibili. Nei rari casi in cui questi modelli considerano 
l'accumulo di danni dovuto a scosse multiple, il parametro di domanda ingegneristica 
(EDP) utilizzato per la stima dei danni e la derivazione delle curve di fragilità è basato sullo 
spostamento di picco. Questa EDP, che non aumenta monotonicamente con gli nel caso 
di scosse multiple, non riesce a catturare con precisione la progressione del danno. In 
questo studio, abbiamo analizzato la progressione del danno nelle colonne in cemento 
armato (RC), che collassano a flessione, a taglio e a una combinazione di flessione e taglio. 
Sfruttando i dati sperimentali, abbiamo calibrato un indice di danno di Park e Ang 
modificato, più adatto a modellare la progressione del danno. Inoltre, abbiamo esaminato 
diverse ipotesi di modellazione, convalidandole con i dati sperimentali. I nostri risultati 
dimostrano che, sebbene sia necessaria un'ulteriore convalida con dati sperimentali, l'EDP 
proposto identifica efficacemente stati di danno distinti. Di conseguenza, emerge come un 
buon candidato per lo sviluppo di curve di fragilità e vulnerabilità nel contesto della 
valutazione del rischio di sismicità clusterizzata.  

In terzo luogo, un altro ingrediente fondamentale per ottenere una stima accurata del 
rischio è il legame tra la pericolosità sismica del sito di interesse e la fragilità strutturale. 
Quando le curve di fragilità sono derivate analiticamente, è necessaria una selezione degli 
accelerogrammi da utilizzare per eseguire l'analisi della risposta non lineare sulla struttura 
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(o sulle strutture) di interesse che sia coerente con la pericolosità al sito. Questo processo 
di selezione funge da interfaccia tra sismologia e ingegneria e l'importanza di utilizzare un 
insieme di accelerogrammi coerenti con la pericolosità sismica del sito di interesse è stata 
evidenziata chiaramente da numerosi studi in letteratura. Tuttavia, per applicare la coerenza 
con la pericolosità nella selezione degli accelerogrammi è necessario avere a disposizione 
un ampio bacino di moti del suolo sufficientemente forti.  Questo non è quasi mai il caso. 
Di conseguenza, all'analista viene solitamente lasciata l'opzione di aumentare l'insieme 
scalando i moti al suolo più deboli, un'operazione che potenzialmente può falsare le stime 
della risposta strutturale. La nostra indagine su questa pratica ha rivelato che scalare glia 
ccelerogrammi non causa differenze statisticamente significative nelle stime di risposta 
strutturale, a condizione che la loro coerenza con la pericolosità al sito sia mantenuta 
attentamente nella loro selezione, ad esempio utilizzando metodi come lo spettro 
condizionato. Un altro problema pratico che nelle applicazioni reali spesso ostacola 
un'efficace selezione di moti al suolo coerenti con la pericolosità è l'eccessivo carico 
computazionale che ne consegue per il calcolo della risposta strutturale. Anche quando è 
disponibile un numero sufficiente di moti al suolo per l'estrazione di insiemi coerenti con 
la pericolosità, la richiesta di calcolo per l'esecuzione di numerose analisi può essere 
sostanziale, soprattutto per modelli numerici di strutture complessi. Per risolvere questo 
problema pratico, abbiamo esplorato il numero ottimale di analisi necessarie per ricavare le 
curve di fragilità, con l'obiettivo di bilanciare l'efficienza computazionale e l'accuratezza 
delle stime risultanti. 

 

In quarto luogo, dato il nostro obiettivo di includere nell'analisi di valutazione del rischio 
tutti i terremoti e il deterioramento dell'integrità strutturale dovuto a scosse precedenti, è 
indispensabile la derivazione di curve di fragilità specifiche per il sito e per l'edificio che 
tengano in conto lo stato iniziale di danno. A tal fine, abbiamo analizzato la questione della 
selezione di moti al suolo di aftershock che siano coerenti con quelli delle scosse principali 
che possono acacdere nel sito di interesse. Questo passaggio è importante per la derivazione 
analitica di robuste curve di fragilità dipendenti dallo stato di danno. L'importanza della 
selezione dei record di aftershock, tuttavia, non ha ricevuto in letteratura la stessa attenzione 
di quella dei record di mainshock. A tal fine, abbiamo studiato diversi approcci per la 
selezione dei record di mainshock-aftershock, confrontandoli con i risultati della cosiddetta 
"analisi diretta", che può essere considerata un benchmark. L'analisi diretta consiste nel 
simulare molti anni di sismicità che includano le sequenze e nel selezionare i moti del suolo 
appropriati per ogni evento caratterizzato da una magnitudo, M, e da una distanza sorgente-
sito, R, indipendentemente dal fatto che tali eventi siano foreshocks, mainshocks o 
aftershocks. Abbiamo dimostrato che, per il caso particolare che abbiamo considerato, le 
scelte fatte nella selezione dei record di aftershock non sono così critiche come quelle 
relative alla selezione dei record di mainshock. 

Questa tesi sottolinea l'importanza di incorporare la sismicità dovuta alle sequenze di 
terremoti nei modelli di rischio sismico. La considerazione dei soli mainshocks nella 
valutazione del rischio non è più sostenibile, come è emerso chiaramente dalle numerose 



 

 

sequenze che si sono verificate in tutto il mondo negli ultimi decenni. Questo lavoro 
affronta diverse questioni critiche relative alla pericolosità sismica, alla fragilità e alla 
selezione degli accelerogrammi, tentando di colmare le lacune esistenti e gettando le basi 
per la ricerca futura. 
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1. INTRODUCTION 

1.1 MOTIVATION 

In the conventional approach to seismic hazard and risk assessment, the estimation of  the 
probability that ground motion will exceed various intensity levels at a specific site over a 
given period is typically conducted through classical Probabilistic Seismic Hazard Analysis 
(PSHA). In PSHA, all dependent seismic events, such as aftershocks, foreshocks, and 
triggered events, are systematically disregarded. In simpler terms, to predict the rate, 
magnitude, and location of  future seismic events, we rely on earthquake catalogues that 
have been “declustered” to include only the independent mainshock events. As an 
illustrative example, if  one were to decluster earthquake catalogues encompassing seismic 
sequences occurring in Italy in 2009, 2012, and 2016, they would omit 289, 294, and 1298 
dependent events, respectively, with moment magnitudes ≥ 3, as well as more importantly 
seven, six, and nine events with moment magnitudes ≥ 5.  

The motivation behind the exclusion of  dependent events from earthquake catalogues is 
rooted in mathematical simplicity. It has been demonstrated that when declustering is 
performed skillfully, the occurrence of  the remaining events in the catalogue conforms well 
to the tenets of  the Poissonian stochastic process. A Poissonian process implies that (i) 
event occurrences are independent, such that the number of  events in any interval of  time 
is independent of  the number of  events in any other (non-overlapping) interval of  time 
within a short time interval; (ii) the probability of  two or more events occurring in a short 
interval of  time is negligible; and (iii) the process remains stationary over time (with a 
constant average rate of  occurrence in each time interval). Under these assumptions, the 
time T to the next event can be described as an exponentially distributed random variable. 
This approach to describing earthquake occurrence is often referred to as “memory-less”, 
as it lacks any recollection of  the timing, size, or location of  previous seismic events. While 
acknowledging the inconsistency of  the Poissonian assumption with the elastic rebound 
theory and the clustering of  aftershocks, which are temporally and spatially correlated (and 
thus, dependent) Cornell [1968] stated that “the assumption that the occurrences of  
earthquakes follow the behavior of  the Poisson process model can be removed only at a 
greater penalty”. By greater penalty here it is meant the adoption of  more complicated 
renewal processes to describe earthquake recurrence. Furthermore, Cornell and 
Winterstein [1988] studied several recurrence models with temporal and magnitude 
dependence showing that the Poissonian process can well represent the occurrence of  
earthquakes in cases when the hazard is not controlled by a single source, when the time 
since the last significant event is not greater than the average time between events and when 
the fault does not have regular, “characteristic time” behavior. In other words, the 
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Poissonian process is adequate when using area sources of  homogeneous seismicity to 
compute the site hazard. 

Another reason for the adoption of  this simplistic approach is that the mainshock event 
(typically identified with the conventional declustering methods as the event with the largest 
magnitude in the cluster) was assumed to serve, to some extent,  as a representative 
indicator of  the overall damage potential of  the entire sequence. In the design world this 
translates to the notion that if  the building is designed to withstand the ground motion 
generated by the mainshock, it will resist the presumed weaker ground motions associated 
with the lower-magnitude events within the sequence. And, if  it does not, the evacuated 
building would collapse in aftershocks without loss of  human lives. Furthermore, the 
spatial bias that can arise when non-declustered catalogues are employed, which may lead 
to an overestimation of  seismic rates in regions with numerous historical sequences and an 
underestimation in regions where significant clusters have not been observed in the close 
past [Llenos and Michael 2020; Marzocchi and Taroni 2014] is eliminated when we use 
declustering. Finally, the use of  the mainshock-only approach in assessing seismic risk in 
the insurance industry is often defended by CAT modeling practitioners who claim that 
risk models are calibrated using insurance claims and damage data collected at the end of  
seismic sequences, thus encompassing the damage (or loss) caused by all events within the 
sequence.  

We argue that the logic behind the mainshock-only seismicity approach is, at best, weak for 
several compelling reasons. Firstly, one of  the pioneering declustering methods was 
developed by Gardner and Knopoff  [1974], with the title "Is the Sequence of  Earthquakes 
in California, with Aftershocks Removed, Poissonian?". Their straightforward abstract 
answered this question with a "Yes." To this day, this declustering method is employed in 
several national hazard models. However, it is critical to recognize that this method's 
calibration was exclusively based on the Southern California sequence, without any 
assurance of  its applicability to other regions worldwide. Moreover, it is rarely verified 
whether the events left in the declustered catalogues indeed follow a Poissonian 
distribution. Since the publication of  the Gardner and Knopoff  [1974] paper, numerous 
alternative declustering methods have been proposed, yielding catalogues with varying 
numbers of  events. This variability underscores the inherent challenges in accurately 
classifying seismic events belonging to the same cluster. Additionally, retaining the largest 
magnitude event in the cluster as the mainshock is overly simplistic, as the largest magnitude 
does not necessarily mean the largest ground-motion intensity at any given site since events 
within the sequence may rupture different parts of  a fault or, even different faults 
altogether. Finally, in practice, risk models are only partially calibrated using damage or 
claims data. In many parts of  the world, such data may not be readily available, or no recent 
significant earthquakes have occurred to provide relevant data. Even when data are 
accessible, they may come from sequences with mainshocks followed either by an intense 
activity or by hardly any activity. During the calibration of  building vulnerability functions 
(i.e., the relationships linking ground-motion intensity to repair costs), which form the core 
of  earthquake risk models, no distinction is typically made between damage caused by a 
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single event versus damage caused by a sequence of  events. If  damage data are available, 
they are often utilized without further scrutiny. Secondly, in most cases, risk models are 
compelled to rely on analytical studies to derive building vulnerability functions, particularly 
for relatively recent building classes that have not been tested by severe earthquakes. Given 
the absence of  empirical data and the fact that these analytical studies often utilize only 
mainshock ground motions, the resulting vulnerability functions are developed without 
consideration of  damage accumulation resulting from multiple shocks. Even if  the 
aftershock losses were perfectly integrated into conventional vulnerability curves, which is 
not the case, they would be applied to estimate losses for the next event, which may or may 
not be followed by an intense sequence. It is abundantly clear that the current practice, 
strictly speaking, is far from being rigorous and an improvement is needed. This has been 
demonstrated on several occasions in history when significant seismic sequences occurred, 
revealing that traditional approaches are inherently unconservative and may not fully 
capture the complexity of  the process. 

For instance, in September 2010, Canterbury, New Zealand, experienced a magnitude 7.1 
earthquake that caused substantial damage but fortunately no fatalities. However, this event 
was followed by a significant aftershock sequence, most notably the February 2011 
earthquake with a moment magnitude of  6.2. Despite its lower magnitude, this aftershock 
resulted in additional damage, disruption of  services, and the loss of  182 lives [EEFIT 
2011]. In March 2011, a large magnitude 9 earthquake struck Japan, followed by numerous 
aftershocks. Among these, five had magnitudes greater than 7, and 82 exceeded a 
magnitude of  6 within the first three months after the main event. These aftershocks 
extended the area where damage was observed to locations that were not severely affected 
by the initial mainshock, illustrating the consequences of  seismic sequences [Kazama and 
Noda 2012]. In 2016, Central Italy experienced a strong earthquake sequence. The first 
event, with a magnitude of  6, occurred close to Amatrice and caused some damage. This 
damage was further compounded by subsequent shocks. After the first event in August, 
only the eastern part of  Amatrice was damaged. However, after the October events, nearly 
the entire village was destroyed. The progression of  structural damage during the 
subsequent events revealed that, after the first event, 72% of  buildings were not damaged, 
while only 4% collapsed or were near collapse. Following the entire sequence, no building 
remained without damage, and 65% collapsed or were near collapse [Sextos et al. 2018a]. 
Similar observations have been made in other seismic events, such as the 1985 Michoacan 
earthquake in Mexico [McNally et al. 1986], the Taiwan earthquake [Shin 2000], the Chilean 
earthquake [Chung et al. 2011], and the earthquake sequence in Croatia in 2020 [Atalić et 
al. 2021]. These examples illustrate that the damage and impact of  seismic events can be 
substantially amplified when considering the entire sequence, as opposed to focusing solely 
on the mainshock. 

Motivated by these examples, several researchers started investigating seismic sequences, 
trying to integrate them into seismic hazard and risk assessments. Initial efforts 
predominantly focused on the short-term hazard given the critical nature of  risk 
underestimation in the immediate aftermath of  an event, i.e. in the post-mainshock 
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conditions. The objective was to facilitate decision-making in emergency planning 
following an event (e.g., re-occupancy decisions) and to aid communities in preparing for 
potentially devastating future earthquakes during periods of  low seismic activity. Gallagher 
et al. [1999] proposed a simplified approach, considering the mainshock magnitude and the 
number of  days elapsed since the mainshock, to provide guidelines for assessing the safety 
of  damaged buildings following an earthquake and determining whether they could be re-
occupied. Yeo and Cornell [2009] expanded on this concept by introducing a methodology 
that accounted for increased hazard using a procedure referred to as Aftershock 
Probabilistic Seismic Hazard Analysis (APSHA), where the occurrence of  subsequent 
events is modeled conditional on the occurrence of  the mainshock via the Modified Omori 
law [Omori 1894; Utsu 1961]. In addition to the elevated hazard they also considered the 
damage state of  the building after the mainshock, based on the residual capacity of  the 
damaged building, following the approach of  Bazzurro et al. [2004]. This work derived 
aftershock collapse fragility curves through nonlinear static pushover analysis on both 
undamaged and damaged structures, assessing the reduction in capacity by pushing the 
damaged structure to collapse. In recent years,  more detailed models have emerged, aiming 
to better understand the damage patterns that can affect the reduction in the collapse 
capacity. For instance, Raghunandan et al. [2015] calculated the increase in the vulnerability 
of  damaged code-conforming reinforced concrete (RC) frames subjected to ground 
motion sequences and explored various system and component damage indicators to 
identify the most effective proxies for assessing structural safety reduction. They claimed 
that a significant reduction in safety is observed only when the mainshock damage is 
substantial, and that the maximum interstory drift is the best indicator of  the capacity 
reduction. Shokrabadi and Burton [2018] demonstrated that the increase in seismic hazard, 
estimated using APSHA, combined with the reduction in the capacity of  RC frame 
buildings, imposes significant seismic risk on the structures in post-mainshock conditions. 
Zhang et al. [2018] extended this methodology by proposing an approach to assess the 
reduction in a building’s capacity using a machine learning framework, which is 
subsequently used as a criterion for determining the safety of  occupancy. The reduction in 
capacity is evaluated based on the damage response pattern, encompassing peak global and 
local responses. More recently, Galvis et al. [2023] introduced a simulation-based 
methodology to identify damage indicators and safety thresholds for determining the 
suitability for occupancy of  a damaged structure. This approach considered ductile RC 
frame buildings, incorporating factors such as drift, ground motion intensity, the fraction 
of  damaged components, and floor damage indexes as damage indicators. Their findings 
highlighted that floor damage indices, derived from beam and column hinge damage, were 
the most efficient predictors of  collapse capacity for damaged structures. These studies 
underscore the critical need to establish a link between the damage state of  a structure and 
post-event hazard analysis to assess the risk levels associated with building re-occupancy. 

Moving beyond post-mainshock conditions, Boyd [2012] and Iervolino et al. [2014] 
extended the concept of  aftershock probabilistic seismic hazard analysis (APSHA) initially 
developed by Yeo and Cornell [2009]. They identified independent event clusters and 
combined probabilistic seismic hazard analysis (PSHA) with APSHA to calculate the annual 
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exceedance rate of  ground motion intensity levels due to all events in clusters, rather than 
solely to mainshocks. Along a similar line but using a different approach, Marzocchi and 
Taroni [2014] proposed a simplified method within classical PSHA that corrected for the 
negative bias caused by catalogue declustering. More recently, Papadopoulos et al. [2021]) 
proposed a simulation-based framework where the Epidemic-Type-Aftershocks-Sequence 
(ETAS) model [Ogata 1988, 1998], which is arguably the state of  the art, is used to simulate 
realistic seismic sequences and estimate the hazard accounting for all events in a sequence. 
In the framework of  seismic risk assessment accounting for clustered seismicity, several 
probabilistic frameworks have been proposed, explicitly considering damage accumulation 
and earthquake clustering [Iervolino et al. 2016; Jalayer and Ebrahimian 2016; Shokrabadi 
and Burton 2018]. These studies developed damage-dependent curves by subjecting 
numerical models of  buildings to mainshock-aftershock ground motions. The impact of  
damage accumulation was studied both in single-degree-of-freedom (SDOF) systems 
[Goda 2012; Goda and Taylor 2012; Hatzigeorgiou and Beskos 2009; Zhai et al. 2014] and 
multi-degree-of-freedom (MDOF) systems [Hatzigeorgiou and Liolios 2010; Raghunandan 
et al. 2015; Ruiz-García and Negrete-Manriquez 2011]. These studies primarily employed 
non-cumulative, displacement-based Engineering Demand Parameters (EDPs) to assess 
the influence of  seismic sequences on structural response. This choice was dictated mainly 
by the convenience that lies in its easy documentation during experiments and numerical 
analysis. Experimental studies showed that peak noncumulative indices can effectively 
represent damage in well-detailed RC members that are not supposed to experience shear 
failure or bond slip [Cosenza and Manfredi 2000] and their use may be suitable in cases 
when structures are subjected to impulse-type or short-duration earthquakes. However, 
recent research has highlighted the limitations of  such EDPs [Baraschino et al. 2023; Ge 
et al. 2022; Pedone et al. 2023] and underscored the advantages of  adopting energy-based 
EDPs in state-dependent fragility analysis. 

To analytically derive damage-dependent fragility curves, nonlinear response history 
analyses have to be performed by subjecting the structure to both the mainshock and 
aftershock ground motions in a back-to-back fashion. Due to the scarcity of  high-intensity 
mainshock-aftershock ground motions recorded at the same station, several authors 
decided to use mainshock ground motions to represent the ground shaking induced by 
both the mainshock and the aftershock events [Amadio et al. 2003; Luco et al. 2004; 
Raghunandan et al. 2015; Wen et al. 2017] or, to make these scenarios more realistic, they 
would randomly pair mainshock ground motions and scale down the aftershock ground 
motion [Aljawhari et al. 2020; Jeon et al. 2015; Ryu et al. 2011]. While the importance of  
hazard consistency in selecting ground motions for response analysis has been recognized 
and studied by several researchers in the mainshock-only framework [Bradley, 2010; Lin et 
al., 2013; Kohrangi et al., 2017], there is comparatively less research done on this topic 
concerning seismic sequences. Nonetheless, given the correlation between the mainshock 
and aftershock causal parameters (e.g., magnitude and distance), as well as the “similarity” 
in the spectral shape of  the mainshock and aftershock ground motions at the same station, 
it is reasonable to assume that site dependency is also pertinent for clustered seismicity. To 
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the authors' knowledge, there are only a few studies on this topic [Ghotbi and Taciroglu 
2020; Papadopoulos et al. 2020; Zhu et al. 2017].  

1.2 OBJECTIVES AND SCOPE 

Within this thesis, our primary aim is to comprehensively explore the impact of  seismic 
sequences on seismic risk, encompassing both hazard and vulnerability aspects. 
Furthermore, we aim to address knowledge gaps in the field.  We will focus on the three 
separate yet related aspects of  the earthquake engineering practice and probabilistic 
earthquake risk assessment. 

- Our initial objective is to estimate the annual hazard, taking into account all events 
within the sequence, rather than solely focusing on the mainshock. To achieve this, 
we will generate memory-full stochastic catalogues using the ETAS model. We will 
specifically explore two cases: “unconditional case” which will be employed to 
quantify the average increase in seismic hazard due to seismic sequences, and 
“conditional case”, which will be utilized to assess the increase in hazard at a 
specific point in time. The former case can be useful when one is developing 
seismic hazard maps for applications that cannot absorb the variability of  the 
hazard with ease, such as the definition of  design ground motions. Both cases 
instead hold particular relevance for other stakeholders, such as insurance 
companies that, for example, need to establish fair earthquake policy premiums 
and adequate financial reserves to ensure solvency. We will further calibrate ETAS 
parameters for two different regions in Italy and investigate the variability of  ETAS 
parameter estimates. We will compare the hazard estimates obtained from the 
ETAS model with those generated through alternative models. Specifically, for the 
two sites in Central Italy,  we will contrast the ETAS model’s results with those 
derived from the mainshock-only approach, i.e., the Poisson model, and from the 
Omori model which is often used as a simpler alternative to ETAS to model 
seismic sequences. Finally, we will expand our research to other regions such as 
Croatia and Turkey, where significant seismic sequences have been recently 
observed, to test the applicability of  the proposed set of  parameters. 

- In the second part of  the thesis, we will delve into the modeling of  the progression 
of  damage in RC columns. Here, our primary focus will be on the calibration of  a 
newly proposed energy-based damage index. We will define the onset of  distinct 
damage states using gathered experimental data and existing research findings. Our 
objective in this part of  the research is to quantitatively define the framework for 
the development of  damage-dependent fragility and vulnerability curves in the 
realm of  clustered seismicity risk assessment. 

- We will then focus on addressing some of  the practical issues that plague the 
implementation of  hazard-consistent mainshock record selection for the purpose 
of  fragility curve development. Given that an ample database of  sufficiently strong 
ground motions is not available and it likely will not be for decades, analysts have 
resorted to scaling the amplitudes of  weaker motions. In this work, we took a 
closer look at whether this practice may create ensembles of  strong ground 
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motions that could potentially cause bias in structural response estimates. To 
address this, we employed an ensemble of  structures, modeled as SDOF systems 
with different material models, located in Central Italy, and we selected hazard-
consistent sets of  records using the Conditional Spectrum approach [CS, Jayaram 
et al. 2011] and different limits for scaling factors (low and high scaling factors). 
Additionally, we explored the optimal number of  ground motion runs required 
within the CS-based Multiple Stripe Analisys framework [MSA, Jalayer 2003] in 
order to obtain reliable fragility curve estimates with a level of  computational 
burden affordable in real-life applications. We considered and assessed three 
distinct approaches: back-to-back Incremental Dynamic Analysis (B2B-IDA) 
[Vamvatsikos and Cornell 2002], the mainshock-consistent aftershock record 
selection scheme developed by Papadopoulos et al. [2020], and a combination of  
the two. These three methods were used to develop damage-dependent fragility 
curves for different SDOF systems using different Engineering Demand 
Parameters (EDPs) and conditioning ground motion Intensity Measures (IMs). We 
then computed with the derived fragility curves, the annual probabilities of  
exceeding different damage states for these structures, modeling the seismic hazard 
with the ETAS model. A comparative analysis is then conducted against the results 
of  the so-called “direct analysis”, which is considered the benchmark in this 
context. By direct analysis, we mean simulating many years of  seismicity and 
selecting appropriate ground motions for each event characterized by a magnitude, 
M, and, source-to-site distance, R.  
 

The sections within this thesis are written independently, as they have been (or will be 
shortly) published as separate journal articles. Therefore, the repetition of  certain 
contents in different sections of  the thesis is unavoidable.  
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2.THE EFFECT OF SEISMIC SEQUENCES IN 
PROBABILISTIC SEISMIC HAZARD ANALYSIS 

2.1 INTRODUCTION 

Traditionally, seismic hazard and risk assessment studies consider Poissonian occurrences 
of  mainshocks and disregard spatially and temporally dependent events (foreshocks and 
aftershocks), which are removed from earthquake catalogues before computing historical 
earthquake occurrence rates. The justification for this simplification is that the mainshock 
event (which is usually characterized as the event with the largest magnitude in a cluster) 
could, to some extent, represent the damage potential of  the entire sequence. In the design 
world, this translates into implying that if  the building is designed to withstand the ground 
motion shaking of  the mainshock, it will resist the assumed weaker ground motions of  the 
other lower magnitude events in the sequence. However, several studies showed that this is 
an overly simplistic notion as the different events in a sequence may have different 
epicentral areas, and the largest magnitude event does not imply the largest ground motion 
intensity at any site. It is undeniable that earthquake sequences pose an additional risk to 
society because of  the increment in financial losses due to increased direct damage to the 
built environment and to longer business interruption that follows. The underestimation 
of  seismic risk by the traditional approach (here, by risk we refer to the ground-up losses 
to repair physical damage and not to insurance losses) is expected to be especially important 
in the period after the occurrence of  a significant event due to the elevated short-term 
hazard (post-mainshock conditions). This issue was extensively studied in past decades with 
the primary objectives of  both supporting the decision-making process associated with 
emergency planning in the aftermath of  an event, and of  helping communities prepare in 
periods of  low seismicity for potentially destructive future earthquakes. These studies 
modeled the occurrence of  subsequent events conditional on the occurrence of  mainshock 
usually via the Modified Omori law [Omori 1894; Utsu 1961] (e.g., [Gee et al. 2021; 
Reasenberg and Jones 1989; Wiemer 2000; Yeo and Cornell 2009]) or, more rarely, via the 
ETAS model [Ogata 1988, 1998], such as in the studies of  Field and Milner [2018] or Taroni 
et al. [2018]. 
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Going beyond the post-mainshock conditions, Boyd [2012] and Iervolino et al. [2014] 
extended the aftershock probabilistic hazard analysis (APSHA) developed by Yeo and 
Cornell [2009]. They identified independent clusters and combined PSHA and APSHA to 
calculate the annual exceedance rate of  a ground motion intensity level at a specific site due 
to all the events in clusters (SPSHA) rather than just to all the mainshocks. Along the same 
line, but using a different approach, Marzocchi and Taroni [2014] proposed a simple 
method based on the classical PSHA that introduced a correction for the negative bias (i.e., 
underestimation) caused by catalogue declustering. For each cell in the domain, they 
suggested a correction to the total seismicity rate and the magnitude-frequency distribution 
to make them equal to those computed from the whole (non-declustered) catalogue.  

However, our objective is neither to perform the short-term forecast (i.e., to find the 
probabilities of  exceeding ground motion level conditional on the occurrence of  the 
mainshock) nor to provide the seismic hazard estimates during the sequence. Similar to 
Papadopoulos et al. [2021], our goal is to include all the events in a sequence and not only 
the mainshock into the estimation of  annual hazard and, later, risk to specific structures 
and portfolios of  them. We will do so by generating sets of  memory-full stochastic 
catalogues using as initial conditions the seismicity occurred until the time of  the analysis. 
For this task, we will utilize the ETAS model, which is arguably state-of-the-art for 
modeling seismic sequences, both temporally and spatially. 

Including all events in a sequence to calculate seismic rates is relevant, for example, to the 
insurance industry, where it is well known that traditional seismic risk assessment studies 
based on declustered catalogues underestimate the risk by neglecting sequences. To cover 
for such an unknown bias and other unknowns, insurance companies traditionally add 
significant loadings to the pure premium (i.e., the one based on the average annual loss) of  
earthquake insurance policies. Given that this bias is not well estimated, for business 
reasons this practice necessarily leads to an overcorrection of  earthquake insurance 
premiums offered to the public. It is worthwhile noting, however, that exceptions to this 
practice exist as some risk models make an attempt to somewhat consider seismic 
sequences. For instance, Shome and Williams [2014] included the occurrence of  
aftershocks while estimating the change in seismic risk in Japan, after the Tohoku 
earthquake, by using the rates calculated with the Reasenberg and Jones [1989] 
methodology and averaging them over a 5-year long period.   

As for the case of  earthquake-resistant design, arguments in favor of  using simplified 
approaches based on mainshock-only seismicity for risk assessment are not lacking. For 
example, the use of  the mainshock-only approach in assessing seismic risk in the insurance 
industry is often supported by the logic that risk models are calibrated with the total damage 
(or claims) data collected at the end of  sequences that include both damage (or loss) caused 
by mainshocks and damage (or loss) caused by aftershocks. This reasoning holds some 
truth when the time elapsed between the mainshock and the following events is short, and 
building inspection between events could not be done. This logic, however, is weak at best, 
for at least two reasons. First, in reality, risk models are only partially calibrated using 
damage or claims data. In many parts of  the world, these data are simply not available, or 
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no recent strong earthquakes have occurred in recent time, and the only data available may 
be for old events that affected a different building stock. Even when available, damage or 
loss data may come from sequences with mainshocks followed either by an intense activity 
or by hardly any activity. No difference between damage caused by one event or by a 
collection of  events is considered during the calibration of  the building vulnerability 
functions (i.e., relationships that link ground motion intensity with repair cost) that are at 
the core of  such earthquake risk models. The damage/loss/claims data, if  available, are 
just used without further scrutiny. Second, in most cases, risk models are forced to use 
analytical studies to derive building vulnerability functions, at least for the relatively recent 
building classes never tested by any severe earthquake. For these building classes, given the 
lack of  empirical data and given that such analytical studies use only mainshock ground 
motions, the vulnerability functions are derived with a complete disregard of  damage 
accumulation caused by multiple shocks. Even if  the aftershock losses were perfectly 
embedded in the conventional vulnerability curves, which they are not, they would be 
applied to estimate the losses for the next event that may, or may not, be followed by an 
intense sequence. Therefore, it is abundantly clear that the current practice, strictly 
speaking, is far from being rigorous and should be improved. In this paper, however, the 
focus is on seismic hazard rather than risk and, hence, these important considerations 
related to risk assessment in presence of  clustered seismicity will be discussed in more 
detail in a future article.  

To better understand the impact of  sequences on seismic hazard estimates (which, in turn, 
affect risk estimates), we consider two cases. The first is the “unconditional case” (or 
“random year”), where we sample multiple 1-year long stochastic catalogues, each one 
starting with different initial conditions. This exercise is meant to identify the average long-
term increase in seismic hazard estimates due to sequences. This information could be 
helpful for applications that need stable hazard estimates that do not change whenever a 
significant event occurs (e.g., hazard maps informing building codes). The second is the 
“conditional case,” which again considers multiple 1-year long stochastic catalogues, but in 
this case, each one starts with the same initial conditions. This exercise is meant instead to 
identify the average long-term increase in seismic hazard estimates due to sequences at a 
particular point in time, information that is useful for applications such as pricing 
estimation for insurance policies to be issued in the period covered by the computation 
length (i.e., one year here). 

Therefore, in the former case, the estimate of  a hazard rate increase could have been 
computed by averaging the hazard estimates for simulated catalogues of  any time length. 
We chose one year here because usually hazard rates are presented for that time unit. In the 
latter case, however, we are interested in estimating the hazard at a specific time (perhaps 
after or during an intense sequence), conditional on the past seismicity in previous years. 
In this case, as alluded to above, the selection of  the time length of  the stochastic catalogues 
is clearly driven by the application. The time length of  the simulated catalogues is the 
consequence of  a practical decision rather than a conceptual one. Taking a one-year-long 
period is motivated by many real-world applications, particularly in the insurance industry, 



Nevena Šipčić 

 

12 

where earthquake risk estimates over 1-year long horizon starting at the time of  the policy 
issuance are required since earthquake policies are annual contracts. However, suppose an 
application calls for assessing the hazard increase over a longer period starting from the 
time of  computation (e.g., 3-year-long cat bonds). In that case, the proposed methodology 
can be replicated in an identical manner by simply lengthening the time of  the simulated 
catalogues, as needed. 

In the following sections, we first describe the ETAS model vis-à-vis the simpler Omori 
law approach for modeling earthquake sequences and compare both with the Poissonian 
approach that, taken at face value, disregards them. Then we investigate the variability of  
the estimates of  the ETAS parameters in different regions of  Italy and show that the ETAS 
model is capable of  modeling realistic sequences with several tests. We then define the 
Poisson and Omori model, followed by the discussion about the effects of  declustering on 
the Poisson model and the consistency of  the Omori model with the available data. Finally, 
we estimate the hazard curves at the two selected sites with the three described methods, 
and we summarize our findings. 

2.2 INITIAL CONSIDERATIONS ABOUT ETAS, OMORI AND POISSON MODELS 

Using a complex approach, such as ETAS, to model seismic sequences can be considered 
impractical and this consideration motivated us to investigate two alternative, simpler 
models. The final considerations on the appropriateness of  these three modeling choices 
that will follow are based on the comparison of  seismic hazard curves for two sites in 
Central Italy computed in three ways: a) using the ETAS model; b) the classical mainshock-
only Poissonian model, and c) an approach that combines mainshock Poissonian modeling 
and aftershock modeling via modified Omori law (e.g, Iervolino et al. [2014]). We compare 
the hazard curves for the conditional and unconditional cases mentioned earlier in all three 
modeling choices. To estimate the seismicity rate using the b and c models, it is necessary 
to agree on the (arbitrary) definition of  what constitutes a mainshock. This definition 
guides the selection of  the declustering method to adopt and, given the method adopted, 
of  the specific values of  the temporal and spatial parameters utilized for sifting out the 
foreshocks and aftershocks events in a cluster. Moreover, the parameter values of  the 
modified Omori law to be used have to be coherent with the declustering technique 
adopted. It is well known that the selection of  the declustering technique and its details can 
significantly affect the characteristics of  the processed catalogue and, therefore, the ensuing 
historical seismicity rates and, from there, the hazard results [Marzocchi and Taroni 2014; 
Mizrahi et al. 2021; Teng and Baker 2019]. Hence, as a part of  this exercise, we examine 
some of  the declustering methods available in the literature, namely Gardner and Knopoff  
[1974], Reasenberg [1985] and Zaliapin et al. [2008]. 

However, for the correct utilization of  the ETAS model, some considerations are in order. 
The ETAS model is calibrated based on the earthquake data available in the region of  
interest. Intuitively, we may assume that some ETAS parameters’ values depend on the 
seismotectonic characteristics of  the specific region. Several studies investigated the 
variability of  the values of  the ETAS parameters across different tectonic zones. For 
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instance,  Chu et al. [2011] explored the variability and fit of  ETAS parameter values across 
different tectonic zones globally and identified significant differences. Similarly, Page et al. 
[2016] showed that aftershock productivity and decay rate vary with the tectonic regime. 
Utsu and Ogata [1995] found high variability of  ETAS temporal parameter values and 
speculated that this variation might be related to the tectonic conditions of  the region (such 
as structural heterogeneity, stress, or temperature). Nandan et al. [2017] applied ETAS in 
different regions of  California and showed a significant spatial variation of  the parameters’ 
values. Conversely, Zhang et al. [2020] investigated the global variability of  ETAS 
parameters’ values in subduction zones that experienced megathrust earthquakes with a 
magnitude larger than M7.5 and showed no apparent systematic regional dependency. 
Stallone and Marzocchi [2019] also found no reason to assume a dissimilarity in the 
properties (in terms of  productivity, duration, and spatial distribution) of  clusters occurring 
in different active crustal regions.  

It remains unclear whether it is justified to use the same set of  ETAS parameters’ values in 
a large area, such as a continent or a country. Ideally, one could distinctly consider regions 
with different seismotectonic characteristics and estimate parameters’ values specific for 
each region. However, there are often practical complications in doing so. For example, 
scarcity of  data sometimes poses difficulties in obtaining robust estimates in each region. 
Even when enough data are available, a somewhat complicated mathematical framework is 
required to properly treat the parameter variation around the boundaries of  the two regions, 
given that events in one region could trigger events in the adjacent one and vice-versa.  In 
order to address these practical issues, we explore the variability of  the estimates of  ETAS 
parameters in two different regions in Italy fitted using a common instrumental catalogue. 

2.3 BUILDING THE ETAS MODEL 

To familiarize the reader with the ETAS model, we first review its fundamentals defined by 
Ogata [1988, 1998]. The ETAS model is one of  the space-time point Hawkes processes 
formulated as the combination of  background seismicity and triggered seismicity. Every 
background (or parent) event can trigger offspring events potentially capable of  producing 
offspring of  their own. Thus, the overall rate of  events (sometimes called conditional 
intensity) with magnitude m at a certain point in time and space, conditional upon the 
history of  prior earthquakes, Ht, can be characterized by the general form given with 
Equation (2.1) [Seif  et al. 2017; Zhuang et al. 2004]: 
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The index j refers to all past earthquakes. For simplicity and computational benefit, we 
assume that the background rate is stationary in time, i.e.,  µ(x,y,t)=µ(x,y), even though this 
assumption may not always be valid [Lombardi and Marzocchi 2007]. A triggering function 
g(t-tj,x-xj,y-yj,mj) which comprises a productivity function, a temporal distribution and a 
spatial distribution, gives the rate of  triggered events. The function g has the following form 
[Ogata 1998]:  
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The productivity term k(mj)=Aeα(mj-mc) represents the mean number of  events directly 
triggered by an earthquake of  a magnitude mj, where mc is the minimum magnitude 
considered. The temporal decay of  triggered earthquakes, namely v(t-tj)=(p-1) cp-1(t-tj+c)-p, is 
modeled with the so-called Modified Omori law [Omori 1894; Utsu 1961]. While 
productivity and temporal distribution adopted by researchers are typically the same, spatial 
distribution f(x-xj,y-yj,mj) can be found in several formats.  The one adopted in our study  
showed good performance in Papadopoulos et al. [2021] and Zhuang et al. [2004]: 
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It is worthy of  note that the adopted spatial distribution uses a simple isotropic kernel. This 
means that the spatial distribution has no knowledge of  the location of  existing faults in 
the region and it does not eliminate the possibility that an aftershock is triggered exactly at 
the same location of  the mainshock, which is a rather unrealistic case. Ogata and Zhuang 
[2006] corrected this deficiency by using an anisotropic kernel instead but showed that the 
model’s performance did not change significantly. More recently, Fitzenz and Langenbruch 
[2021] showed that using magnitude-dependent kernel weights can improve earthquake 
forecast performance (seen using the log-likelihood score) for large events. However, given 
its heavy computational burden, these enhancements are not considered here.   

The magnitude distribution s(m) of  both background and triggered events, which is 
assumed to be independent of  the other terms, follows the exponential Gutenberg-Richter 
(GR) law, truncated at maximum magnitude mmax. Other models for s(m) can also be used 
(e.g., tapered Gutenberg-Richter).  
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The constant β is equal to ln(10)b, where b is estimated independently from other 
parameters using the maximum likelihood method [Aki 1965] and accounting for the 
magnitude binning correction [Utsu 1966]. One should keep in mind that the method of  
Aki [1965] was developed for non-truncated magnitude distribution and, hence, the b-value 
estimate in Equation (2.4) might be biased. Marzocchi et al. [2020] showed, however, that 
the bias is not significant when Mmax-Mmin≥3.  

As in all empirically-based exercises, to obtain reliable estimates of  the ETAS parameters’ 
values (A, α, p, c, d, γ, and q), it is necessary to have a complete and homogenous catalogue 
with a “sufficient” amount of  data. The catalogue should: a) extend beyond the considered 
region to prevent estimating an artificially lower density near the geographical boundaries 
by excluding offspring inside the border generated by earthquakes in the outer region 
[Wang et al. 2010]; and b) extend beyond a temporal window before the starting time T0 of  
the investigation period to include events within the investigation period that may be 
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triggered by earthquakes that occurred before T0. For these reasons, we extend the studied 
region for 75 km outside of  the borders and include two years of  seismicity as initial 
conditions before the beginning of  the investigation period, T0.  

In our application, the estimates of  the values of  the ETAS parameters are found by 
maximizing the log-likelihood function expressed with: 
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in which S and T are the spatial and temporal windows, respectively, while n represents the 
number of  events in them [Seif  et al. 2017]. The background seismicity rate μ(x,y) can be 
written as v∙u(x,y), where v is the total rate and u(x,y) is the spatial distribution of  the 
background events. To simplify the maximization procedure, the spatial distribution, u(x,y), 
of  the background seismicity rate is computed separately from all the other parameters 
using first the mainshock-only catalogue (obtained using the original Gardner and Knopoff  
[1974] declustering algorithm) and then smoothing the mainshock rate using the Gaussian 
kernel-based smoothing approach proposed by Frankel [1995] with a correlation distance 
of  20 km. 

For an interested reader, the effect of  different background models and different 
correlation distances can be found in Papadopoulos et al. [2021]. The value of  v is estimated 
together with the rest of  the ETAS parameters.  

The value of  the productivity parameter, α, controls the triggering capability of  events with 
respect to the magnitude.  A high value of  α implies that a higher triggering capability is 
given to the events with higher magnitudes, while low value gives more capability to lower-
magnitude events. Several studies showed that the value of  α is found to be lower than 

β=ln(10)b [Chu et al. 2011; Console et al. 2003; Ogata and Zhuang 2006]. However, other 
researchers claimed that this trend is observed due to the unrealistic assumptions of  the 

model (such as isotropic kernel for aftershock distribution) and that, in reality, α≅β, an 
alternative that agrees with the Baths law [Felzer et al. 2003] and stress triggering models 
[Hainzl et al. 2010]. Furthermore, [Hainzl et al. 2013] found that when the aftershock 
incompleteness and time variance of  the background rate are accounted for, results imply 

that α≅β. One should keep in mind that setting α=β can lead to the values of  branching 
ratio, representing the proportion of  the triggered events amongst all events, above one 
[Zhuang and Ogata 2006] indicating the critical process, except in the cases where we 
impose a maximum magnitude. 

While the debate about the appropriate α value remains open in the scientific community, 
we adopt here α=β and consider a vector of  unknown parameters as:  

},,,,,,{  qdpcAv=  (2.6) 

A more comprehensive overview of  the ETAS model can be found in Ogata and Zhuang 
[2006].  
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2.4 SEISMICITY DATA 

Several studies showed that the estimates of  the ETAS parameters are highly susceptible 
to the assumptions made, such as magnitude cutoff, magnitude type, time dependency of  
the background rate, anisotropic aftershock triggering, and aftershock incompleteness [Seif  
et al. 2017; Zhuang et al. 2017]. Keeping the above in mind, it is evident that it is not 
straightforward to compare parameters’ values from different studies that use different 
catalogues (with varying quality, magnitude of  completeness, and spatial and temporal 
windows). In addition, the underlying statistical correlation of  the parameters is 
complicating the comparison even further. Detecting the source of  the potential 
differences between parameters’ values can become very challenging, as different sets of  
values can lead to very close values of  the log-likelihood functions [Lombardi 2017].  

The first objective of  our study is to compare the discrepancies of  the parameters’ values 
across two different regions in Italy. To make the comparison more straightforward and 
consistent, we use the same earthquake catalogue, identical temporal windows, and the 
same minimum magnitude of  completeness. The spatial extent of  the defined regions is 
shown in Figure 2.1. Region 1 is associated with the part of  Italy where significant 
sequences were observed in the recent past, while Region 2 is an area of  high seismicity 
but with less observed activity in the recent past. The data used in this study are obtained 
from the instrumental earthquake catalogue of   [Lolli et al. 2020] (the HOmogenized 
instRUmental Seismic (HORUS) catalogue can be downloaded at ingv.it), homogenized to 
the moment magnitude Mw within a polygon that covers the mainland of  Italy. We select 
the time window between 1983 and 2020 as the investigation period, with the previous two 
years (1981-1983) as the auxiliary window. In the considered investigation period, five 
events with Mw≥ 6 with a maximum magnitude of  Mw=6.6 occurred in Region 1, while all 
events have Mw<6 in Region 2. The data are restricted to events with a maximum 
hypocenter depth of  40 km. Using this dataset, we estimate the Gutenberg-Richter law’s b-
value as 1.03 and 1.04 for regions 1 and 2, respectively. In addition, the minimum 
completeness magnitude Mw of  3 of  this catalogue is estimated as the value at which the 
hypothesis of  exponentially distributed data cannot be rejected at a significance level of  
0.05 [Lilliefors 1969]. The same dataset is used later in this study for underpinning the 
Poisson and Omori models. 

  



Seismic Risk Assessment for RC Buildings Including Earthquake Sequences 

 

17 

 

 

 
  

Figure 2.1. (a) Spatial extend of the considered regions. Dots represent the earthquakes’ epicenters, 
and their size is proportional to the magnitude(only earthquakes with magnitude above 4 
are shown); (b) the number of earthquakes per year; and (c) the temporal distribution of 
the events shown in (a). In all the figures, green is used for events in the target temporal 
window (1983–2020) and gray for events in the auxiliary temporal window (1981–1983).  

2.5 REGIONAL DEPENDENCY AND COMPARISON OF THE ETAS MODEL WITH 

HISTORICAL DATA 

Using the model described in the previous sections and the HORUS instrumental 
catalogue, we find the maximum likelihood estimates (Table 2.1) of  the ETAS parameters 
for the two considered regions. To test the robustness of  these estimates, we use different 
lengths of  the auxiliary windows (from two to ten years) and observe minor differences in 
estimates (see Appendix A1 for details). Furthermore, we estimate the standard errors of  
the parameters following the procedure of  Wang et al. [2010], simulating 200 stochastic 
catalogues and using the values given in Table 2.1. The standard error of  each parameter’s 
estimate is given in the brackets. We also show the total background rate calculated by 
integrating the spatial distribution u(x,y) over the target region and multiplying it by the 
estimated value of  the total rate v. Finally, we estimate the branching ratio, to get a better 
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insight into the triggering properties. The branching ratio,  for the case when α=β, is 
estimated as [Zhuang et al. 2013]: 
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Table 2.1. Estimated mean values and standard errors (within brackets) of the Epidemic-
Type Aftershock Sequence (ETAS) parameters 

ETAS parameters estimates  Region 1 Region 2 

v 0.92(0.11) 0.945(0.088) 

A (events/day/km2) 0.093(0.014) 0.09(0.044) 

c (days) 0.02(0.004) 0.0054(0.0029) 

p 1.18(0.02) 1.08(0.044) 

d (km2) 0.9(0.15) 1.66(0.28) 

q 2.0(0.17) 1.81(0.16) 

γ (magnitude-1) 0.59(0.12) 0.36(0.14) 

Number of events 4323 2835 

Total background rate (events/day) 0.076 0.106 

Branching ratio 0.96 0.92 

There are some evident differences in these sets. For instance, the branching ratio in Region 
1 is higher, which was expected given that significant sequences were observed in this 
region since 1983. Furthermore, based on the temporal parameters p and c, one can find 
that 50% of  the triggered events are expected to occur within one day in Region 1 while 
32 days are needed in Region 2. It is difficult to establish with certainty the origin of  these 
differences, as it could be attributed to parameter bias, model deficiency, actual differences 
in the properties of  the earthquake phenomenon, or a combination of  the above.  

That said, we perform several Turing-style tests [Page and Elst 2018] to verify that the 
ETAS-generated synthetic catalogues can be considered a realistic representation of  the 
physical phenomenon (i.e. if  they are statistically consistent with the observed seismicity). 
To this end, we generate 500 stochastic catalogues describing the seismicity from 1983 to 
2020, conditioned on the history of  the two previous years (1981-1983), and compare their 
characteristics with those of  the observed data. If  the ETAS-based catalogues are 
significantly different from the observed data, one could conclude that the model cannot 
reproduce the characteristics of  the observed seismicity. In this section, we show only two 
of  these tests for conciseness. Additional tests can be found in Appendix A2. These tests 
are by no means exhaustive but are nonetheless indicative of  the robustness of  the 
approach. 
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First, we compare in Figure 2.2 the cumulative magnitude frequency distribution (MFD) 
of  observed and ETAS-simulated events in the 37 year-long observation period. The 
observed number of  earthquakes lies within the 5th and 95th percentiles extracted from 
the simulated catalogues, for Region 1, while some discrepancy is observed for Region 2.  

  

Figure 2.2. Magnitude–frequency distribution (MFD) of the events in the observed and stochastic 
catalogs for the period of 1983–2020 in Region 1 and Region 2. The green dashed line refers 
to the instrumental HOmogenized instRUmental Seismic (HORUS) catalog, the solid 
gray line is the median of 500 epidemic-type aftershock sequence (ETAS)-generated 
catalogs, and the shaded area represents the 5th and 95th percentiles of the ETAS 

simulations. 

We also compare the ETAS model’s clustering behavior with that of  the observed 
seismicity adopting the analysis of  Zaliapin et al. [2008]. Identifying clusters with this 
method is centered on estimating the proxy inversely proportional to the strength of  the 
“bond” between two earthquake events. This proxy represents the nearest-neighbor 
distance in a multidimensional domain (time, location, and magnitude), and it separates the 
space into two subdomains: one (with lower ηij) likely contains clustered events, and the 
other (with higher ηij) likely contains background events. Nearest-neighbour distance can 
be found as per Equation (2.8) where τij is the temporal distance, rij is the spatial distance 
between events i and j, and d is a constant taken equal to 1.3 following Peresan and Gentili 
[2020].  
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Again, stochastic catalogues are used to find the ηij distribution. Figure 2.3 compares the 
median and the 5th and 95th percentiles of  ETAS simulated catalogues with the observed 
seismicity for both regions. The separation between the background and clustered modes 
is clear in Region 1, while in Region 2, the background peak dominates the distribution. We 
can see that in Region 1 the ETAS-based median of  the clustered mode is overestimated 
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and that of  the background is slightly underestimated. However, in general, the 
characteristics of  simulated and observed catalogues show a good match. 

  
Figure 2.3. Distribution of the nearest-neighbor distance ηij for the period of 1983–2020 for Region 1 

and Region 2. The solid gray line refers to the median of 500 ETAS generated catalogues; 
the black one to the instrumental catalogue and the dashed lines represent the 5th and 95th 

percentiles of the ETAS-generated catalogues.  

Even though we can see non-negligible differences in the clustering properties between 
these regions, we argue that this is a matter of  the limited amount of  sequences in Southern 
Italy rather than due to intrinsic dissimilarities in the earthquake phenomena. In fact, very 
few rich sequences were observed in this period outside of  Central Italy. To test the validity 
of  this assumption, we use the CPTI15 catalogue [Rovida et al. 2020] (that can be 
downloaded at ingv.it) to get more information regarding the high-magnitude events which 
are not plentiful in the HORUS catalogue. This catalogue, assembled as a combination of  
harmonized macroseismic and instrumental Italian data, covers the period from 1000 to 
2017, and it is considered complete for events of  M6 and above.   

We simulate 100 stochastic catalogues of  events spanning from 1717 to 2017 in Region 1 
using the parameters calibrated based on the HORUS catalogue and Region 1. Then, we 
repeat the exercise for Region 2 but using two sets of  parameters’ values: the set of  
parameters calibrated for Region 2 (second column in Table 2.1) and the set of  parameters 
calibrated for Region 1 (first column in Table 2.1).  The M6+ events of  all simulated 
catalogues are then compared with the M6+ events included in the CPTI15 catalogue. First, 
it is essential to acknowledge that in Region 1 ETAS can predict the historical seismicity 
well even though the model is calibrated using a different catalogue (see Figure 2.4a). There 
is some overestimation of  results, possibly because the last 40 years, for which the 
parameters are calibrated, were particularly active, but not significantly. Second, in Region 
2, one can observe that the set of  parameters from Region 1 provides MFD closer to the 
observed one (see Figure 2.4b and Figure 2.4c).  Based on these results, we speculate that 
using the set of  parameters from Region 1 where the observed seismic sequences are 



Seismic Risk Assessment for RC Buildings Including Earthquake Sequences 

 

21 

plentiful and, therefore, the parameters’ values are well-constrained yields more defensible 
seismicity estimates in Region 2.  

   
Figure 2.4. MFD of the observed and stochastic catalogues for the period of 1717–2017 in (a) Region 

1, using parameters of Region 1, (b) Region 2, using parameters of Region 2, and (c) 
Region 2, using the parameters of Region 1. The gray dashed line refers to the historical 
CPTI15 catalogue, the green line is the median and the shaded area is 5th and 95th 
percentiles of the 100 ETAS-generated catalogues.  

It is worth noting that assuming that the ETAS parameters in these regions are the same 
does not mean that the total background rates are equal. More specifically, we assume that 
the ratio between background events (computed within the maximization procedure) and 
the events in the declustered catalogue we used is the same for the three regions. However, 
this assumption does not imply that the total background rate is the same. 

2.6 POISSON AND OMORI MODELS 

In order to use the model that combines Poisson and Modified Omori law, it is necessary 
first to simulate Poissonian mainshock events. To do so, we decluster the catalogue, then 
calculate MFDs and rates using a correlation distance of  20 km, which is also used for the 
background seismicity in ETAS. For every mainshock event, we generate aftershocks 
following the Reasenberg and Jones [1989] methodology. Within this formulation, the rate 
of  aftershocks with magnitude ≥mc at time t (time elapsed since the mainshock event) is 
found using the combination of  the temporal [Omori 1894] and productivity [Utsu 1961] 
laws as: 
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where a, c and p are model parameters, while b is the value from the Gutenberg-Richter law. 
To estimate the parameters’ values, we maximize the log-likelihood function, given by: 
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where N is the number of  aftershocks, while to and tend refer to the beginning and the end 
of  the period considered. Reasenberg and Jones [1989] proposed probability distributions 
for these parameters, fitting several California sequences, later extensively used in seismic 
forecasting. Estimating the Omori parameters with sequence-specific fits can be 
challenging as many sequences do not have aftershocks above completeness magnitude, 
while simply disregarding these sequences causes a positive bias in the estimate of  the 
productivity parameter a. That said, it is now well recognized that  Reasenberg and Jones 
[1989] overestimated the value of  a as they only considered sequences with a sufficient 
amount of  aftershocks [Felzer et al. 2003]. In our study, we use instead the methodology 
proposed by Page et al. [2016], utilized as a foundation for short-term aftershock 
forecasting at USGS, where, to get better-constrained results, all sequences relative to the 
corresponding mainshock’s time are stacked together, and mean Omori parameters are 
estimated. Based on the sequences identified with the chosen methodology (which we 
discuss in the following subsections), the equivalent earthquake magnitude is estimated as 

 =

K

j

Mb
jb

110 10log)/1( in which K is the number of  mainshocks in the stack [Hardebeck et 

al. 2019]. As the proposed model is purely temporal, to model aftershocks’ spatial 
distribution, we use a simple circular area around the mainshock with a radius equal to three 
rupture lengths estimated with the Wells and Coppersmith [1994] scaling law. While we are 
aware that this model might be overly simplistic, a detailed investigation of  the aftershocks’ 
spatial distribution is outside the scope of  our work.  

The approach described above is extensively used in the literature to model earthquake 
sequences because it has the advantage of  having fewer parameters to estimate than ETAS, 
and it builds on the familiar mainshock-only Poissonian model and upgrades it. We believe, 
however, that this approach has some critical weaknesses, which we address in the following 
subsection. 

2.6.1 Effect of  declustering on the Poisson model 

The Poissonian rates of  occurrence of  mainshocks are empirically estimated from 
declustered catalogues, which are obtained using declustering techniques. These techniques, 
however, are plagued by several arbitrary decisions that inevitably color the final results. To 
investigate the declustering caveats, we apply here three different techniques to the HORUS 
catalogue for Region 1, minimum magnitude M3, and the period from 1981-2020. 

The most used and the simplest declustering technique is the window-based Gardner and 
Knopoff  [1974] method (GK74). The algorithm identifies the largest M event in a 
sequence and removes all other events within a window with M-specific pre-specified 
temporal and spatial parameters centered at the identified event. A more complex 
declustering approach was later proposed by Reasenberg [1985] (R85), who extended the 
work of  Savage [1972]. Their idea was to link every event to a cluster via a spatio-temporal 
proxy. Every event linked with the prior one joins its cluster and, therefore, clusters grow 
by association. In this manner, the spatio-temporal window does not solely depend on the 
mainshock magnitude (as it does in GK74) but instead varies with events’ behavior. More 
precisely, the spatial extension is based on the stress distribution pattern, which is assumed 
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to depend on the cluster’s last and largest event. The temporal extension is developed based 
on the probabilistic model and Omori law. More details about the model can be found in 
[Molchan and Dmitrieva 1992; Reasenberg 1985; Stiphout et al. 2012]. Lastly, we use the 
nearest-neighbor proxy defined by Zaliapin et al. [2008] (ZNN) to identify the sequences, 
the largest event of  which is kept as the mainshock. More details about this model are given 
in the previous section. One should bear in mind that the declustering methods mentioned 
above might be affected by the parameters that define them, calibrated based on a particular 
region and a limited amount of  data. They may or may not be the optimal set of  parameters 
for other regions but are nonetheless used extensively in the literature. Besides the GK74, 
R85 and ZNN considered here, several other methods for identifying sequences can be 
found in the literature, from simple deterministic ones to more advanced stochastic ones 
such as [Llenos and Michael 2020; Zaliapin and Ben-Zion 2020; Zhuang et al. 2004]. This 
high number of  available declustering methods clearly reflects the true difficulties in 
reliably classifying earthquake events.  

As stated earlier, one of  the main objectives of  declustering is to obtain a catalogue of  
earthquakes (mainshocks) whose temporal occurrences can be modeled as a Poissonian 
distribution. A check of  whether the Poissonian process assumption holds is rarely carried 
out in practice.  As Luen and Stark [2012] showed, whether the declustered catalogue could 
be considered Poissonian depends on the declustering method, available catalogue, 
magnitude range, and the statistical test utilized. Therefore, we first test the Poissonian 
assumption with the Kolmogorov-Smirnov one-sample test following Luen and Stark 
[2012], and we show its p-values in Table 2.2. The p-values obtained for all three declustered 
catalogues are low (below 5%), with the GK74 catalogues yielding the highest values and 
the R85 ones yielding the lowest. This trend, also observed in other studies, led to the use 
of  GK74 for declustering the catalogues adopted in National Seismic Hazard Models, e.g., 
MPS19 for Italy [Meletti et al. 2021] and NSHM for the USA [Petersen et al. 2020]. Table 
2.2 also compares the number of  events in the entire catalogue with the number of  events 
in the three declustered catalogues. From these results, one can see that the R85 method 
retains by far the highest number of  mainshocks while GK74 and ZNN yield similar 
results. 

Table 2.2. Properties of the declustered catalogues (Region 1, Mmin=3, Period 1981-2020) 

Method GK74 R85 ZNN 

Number of  MS 1191 2240 1151 

Number of  AS 2513 1857 2610 

Ratioa 26.8 50 25.9 

p-value (Mmin=3) 3.7∙10-2 10-18 3∙10-4 

p-value (Mmin=3.5) 4.0∙10-2 1∙10-5 42∙10-2 

 

a Number of events in entire catalogue to the number of events in declustered catalogue 
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On a different note, keeping only the largest events in the clusters might affect the b-value 
due to the Gutenberg-Richter law’s inevitable distortion. The declustering technique 
removes a disproportionately much larger number of  lower magnitude events than higher 
magnitude ones (i.e., it does not sample the Gutenberg-Richter distribution randomly) and, 
therefore, it tends to lower the estimate of  the b-value. To check that the magnitude of  the 
events in the three declustered catalogues can still be reasonably modeled with an 
exponential distribution, we use the Lilliefors [1969] test and conclude that the hypothesis 
of  exponential distribution cannot be rejected at a significance level of  5% in all three cases. 
Figure 2.5 shows the Gutenberg-Richter distribution and associated b-values for the three 
declustered catalogues to illustrate that significantly lower values were obtained for GK74 
and ZNN models. On the contrary, the catalogue declustered with R85 has the same b-
value as the full catalogue. The issue related to the distortion of  the GR b-value due to 
declustering was acknowledged in the Uniform Californian Earthquake Rupture Forecast 
version three [ UCERF3; Field et al. 2014], where, for the MFD of  the gridded seismicity 
model, the b-value of  the declustered catalogue was used only before the point where 
MFDs of  the full and declustered catalogues crossover. Nonetheless, a common practice 
in PSHA is still to take the b-value of  the declustered catalogue as is and, therefore, to 
overestimate the rate of  high-magnitude events in hazard calculations possibly considerably 
[Mizrahi et al. 2021]. 

 

Lastly, one should note that the declustering also affects the spatial distribution of  the 
events as recently illustrated by Llenos and Michael [2020]. The spatial distribution of  
events declustered with the three different methods can be found in Appendix 0.  

Keeping the above discussion in mind, one needs to be careful with the interpretation of  
the declustering results, as it is not guaranteed that the occurrence of  the remaining events 
can be reasonably modeled with a Poisson distribution. Additionally, it is necessary to be 

Figure 2.5. Gutenberg–Richter law for the full HORUS 
catalog and for three different declustered catalogs 
extracted from it (figure refers to Region 1) 
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aware of  the sensitivity to the chosen method as different catalogues declustered from the 
same initial catalogue can have significantly different numbers of  events and different b-
values of  Gutenberg-Richer law. 

2.6.2 Consistency of  Omori model with the available data 

Using the three models previously described (GK74, R85, and ZNN) and the methodology 
presented in the previous section, we estimate the values of  the Omori parameters for 
Region 1, minimum magnitude M3, and the period 1981-2020. It is essential to highlight 
that the values of  the set of  Omori parameters obtained here differ from the values of  the 
set estimated in the ETAS model (first column of  Table 2.1) because the values of  the 
Omori parameters in ETAS are applied locally, i.e., to every generation of  aftershocks. In 
the Modified Omori law model, on the other hand, all aftershocks are assumed to be 
triggered by a single mainshock event, and, hence, the parameters’ values refer to entire 
sequences. Therefore, the applicability of  the Modified Omori-Utsu law is questionable in 
cases with complex sequences as frequent occurrence of  large aftershocks, which might 
trigger their own sequences, can break the Omori law assumed for the entire sequence 
[Spassiani and Marzocchi 2018]. Furthermore, several studies showed that aftershock 
productivity could significantly vary from sequence to sequence, suggesting that differences 
in the tectonic region [Chu et al. 2011; Page et al. 2016], the geometry of  source [Dascher-
Cousineau et al. 2020], mainshock stress drop variability [Marsan and Helmstetter 2017] 
and heat flow [Zaliapin and Ben-Zion 2016] might be potential reasons. Hence, assuming 
the same value of  the productivity parameter (a in Omori and A in ETAS) for all sequences 
can cause bias, reducing the sequence-to-sequence variability. Even though this problem is 
mutual for both the ETAS and Omori models, ETAS benefits from some natural variability 
intrinsic in the model. 

The derived parameter estimates are presented in Figure 2.6. To better assess the 
reasonability of  the Omori law parameter values obtained from the GK74, R85, and ZNN 
declustering methods, we generate 500 stochastic catalogues in Region 1 over the 1983-
2020 period (the previous two years of  seismicity are used to feed the model, similarly as 
in the ETAS case) using Monte Carlo simulation.  In this exercise, we estimate the number, 
magnitude, location, and time of  the aftershocks generated by each mainshock event 
simulated via the Poisson model and compare them with the observed values in the 
HORUS catalogue. The b-value for simulating the mainshocks is given in Figure 2.5, while 
for the aftershocks, we use 1.03 (b-value of  the full catalogue), as this is a common approach 
in the literature. In addition, the magnitudes of  the generated aftershocks are constrained 
to be lower than the corresponding mainshock’s magnitude for consistency with the 
assumption adopted in the three declustering techniques. Figure 2.7a compares the 
magnitude frequency distribution of  the earthquakes in the 500 simulated catalogues with 
the one of  the HORUS catalogue. In all cases, the match is satisfactory even though the 
parameters used are somewhat different. 

As we use different b-values for simulating mainshocks and aftershocks in the Omori 
model, the b-value of  the resulting simulated catalogue remains unclear. That said, we 
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estimate the median and 90% confidence interval based on the 500 Omori simulated 
catalogues and compare them with those of  the 500 ETAS simulated catalogues and with 
the original b-value of  the HORUS full catalogue (Figure 2.7b). With all Omori variants, 
the b-value of  the simulated catalogues is higher than the original, while in the case of  
ETAS, this value is perfectly recovered. To the authors’ knowledge, this issue with the 
Omori model is not recognized in the literature, and the b-value of  the resulting stochastic 
events, which is somewhat arbitrary, is left unchecked. 

   
Figure 2.6. The stacked rate of aftershocks following mainshocks from 1981 to 2020 in Region 1 (the 

minimum magnitude considered for both mainshock and aftershock events is M3). The 
gray solid line shows the aftershock rate obtained with the Reasenberg and Jones [1989]  
model, whereas the empirical aftershock rate was found from two consecutive aftershocks 
in the stack as 1/(tj+1-tj) [Hardebeck et al. 2019]. From left to right, the method used to 
identify sequences is Gardner and Knopoff [1974] (referred to as GK74), Reasenberg [1985] 
(referred to as R85), and Zaliapin et al. [2008] (referred to as ZNN), respectively. 

 

 

Figure 2.7. (a) MFD of the observed and simulated catalogues for the 1983–2020 period in Region 1. 
The dashed gray line refers to the instrumental HORUS catalogue, whereas other lines 
refer to the median of 500 Omori-generated catalogues using different sets of parameters’ 
values; (b) Median and the confidence intervals for b-value estimated based on the 500 
simulations, for different models. 
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2.7 HAZARD ESTIMATES 

In this section, we compare and contrast the hazard estimates in terms of  Sa(0.3s) (spectral 
acceleration at the period of  0.3 s), at two rock sites (shear wave velocity in the top 30 m 
of  800 m/s) in Norcia and Perugia (Region 1, Central Italy) obtained from different 
catalogues that use the Poisson, Poisson + Omori, and ETAS approaches to model 
earthquake occurrences. More specifically, we simulate 20,000 1-year-long stochastic 
catalogues of  seismicity in Region 1 using these three approaches. To each event in the 
catalogue, rupture properties, such as a rake, dip, slip, and seismogenic depth, are generated 
using the SHARE seismic source model [Woessner et al. 2015] following the procedures 
implemented in the OpenQuake software [Pagani et al. 2014]. We used the Abrahamson et 
al. [2014] GMPE to characterize the ground motion generated by each earthquake. As 
explained in the Introduction section, following Papadopoulos et al. [2021], we produce 
two sets of  ETAS hazard estimates. In the first so-called ‘unconditional’ case, we generate 
11 years of  seismicity with no initial conditions (i.e., no auxiliary period), and we retain only 
the last simulated year. This procedure guarantees an unbiased seismicity level (i.e., neither 
high nor low compared to the long-term one) as the initial conditions for the catalogues 
used for hazard calculations. In the second so-called ‘conditional’ model, the initial 
conditions are controlled and fixed to a specific auxiliary 2yr-period and, again, the 
seismicity of  the following year is simulated. Herein, as an auxiliary period, we choose the 
high seismicity period 26/04/2015 - 26/04/2017 with active ongoing sequences, and we 
simulate the seismicity of  26/04/2017- 26/04/2018. 

For the Poisson + Omori model (in the following text, for brevity, we simply refer to this 
model as the Omori model), we also consider these two cases. The ‘unconditional case’ is 
conceptually the same, while in the ‘conditional’ case, we feed the model with the seismicity 
observed in the auxiliary 2yr-long initial window extracted this time from the declustered 
catalogue as, by definition, only mainshock events can generate aftershocks within this 
model. Naturally, as the Poisson model is time-independent, there is no distinction between 
the ‘conditional’ and ‘unconditional’ cases. In all the hazard analysis computations, we only 
consider events with magnitude ≥M4. The seismic hazard curves are derived by counting 
the number of  events that exceed each given level of  spectral acceleration and dividing it 
by the total number of  stochastic 1-year long catalogues, i.e., annual rates are estimated. If  
the annual probabilities of  one or more exceedances are needed, one needs to count the 
number of  stochastic catalogues in which each given level of  spectral acceleration is 
exceeded at least once and divide it by the total number of  stochastic 1-year long catalogues 
simulated. 

2.7.1 Poisson and Omori model comparison 

In Figure 2.8, we compare the annual rate of  exceedance of  Sa(0.3s) obtained via both the 
Poisson and Omori models, considering the three different declustering techniques of  
GK74, R85 and ZNN. First, we can observe that the hazard estimates obtained with the 
Omori model are higher than those from the Poisson ones for all declustering methods 
and both considered sites, as expected, given that the rates are higher in the former case. 
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The GK and ZNN models yield similar results for both the Poisson and Omori models 
and for both sites. ZNN hazard estimates are slightly higher for larger intensities in the 
Poisson case, possibly due to the lower GR b-value that causes a higher rate of  large-
magnitude events. R85 results in higher hazard estimates in the Poisson case for both 
Norcia and Perugia, which was expected as the R85 declustered catalog contains more 
events (Figure 2.5). On the other hand, in the Omori model, the difference is observed 
only for Norcia, where R85 again predicts the highest hazard estimates, while in Perugia, 
the three curves are almost indistinguishable. This might be due to the differences in the 
spatial distribution of  the events in different Omori models as R85 retains more events in 
the Central part of  the region, where Norcia is located (figures illustrating spatial 
distribution can be found in Appendix A4). One should remember that the earthquake 
occurrences in the R85 declustered catalog do not follow a Poisson distribution, and, hence, 
the obtained hazard curve is not coherent with the hypothesis. 

  
Figure 2.8. The annual rate of exceedance for (a) Norcia and (b) Perugia. The rates from the Omori 

model are shown with a solid line and those from the Poisson model with a dotted line. 
Random initial conditions are assumed, that is, the “unconditional” case.  

2.7.2 Omori and ETAS model comparison 

Figure 2.9 compares the Norcia and Perugia hazard curves produced by the Omori, ETAS 
and Poisson models. For brevity, we only consider here Poisson and Omori model based 
on the GK74 declustered catalog. As expected, in all cases considered, both Omori and 
ETAS generate hazard curves that are undoubtedly higher than the Poisson-based one. In 
the unconditional case, the annual rates found with the ETAS model are consistently higher 
than those found with the Omori model, although not significantly higher. This result 
implies that both models are equally suitable to compute hazard in periods of  average 
seismicity. However, in the conditional case, the year of  hazard computations follows a 
period plagued by an active sequence. In this case, the ETAS results are considerably higher 
than those based on the Omori model. The reason for this is that 102 events with 
magnitude ≥M4 occurred in the investigated region in the auxiliary period used as initial 
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conditions for the ETAS model. Only seven such events, which survived the declustering, 
are fed to the Omori model. Some of  the events removed by the declustering process are 
the high-magnitude events (≥M5) that preceded and followed the M6.6 mainshock 
earthquake that occurred on 30/10/2016 near Norcia.  Based on the findings of  this 
example, we infer that the Omori and ETAS models can predict significantly different 
results in periods of  higher-than-average seismicity during ongoing active sequences.   

The statement above, however, seems to apply only to sites close to the sequences. For 
Perugia, which is significantly farther from the focus of  the activity, ETAS yields higher 
rates for lower intensities but lower rates for higher intensities. Hence, it is intuitive to 
expect that the Omori model may provide hazard estimation similar to the ETAS at sites 
away from the bulk of  the active sequences even in the period of  heightened activity. These 
are only simple considerations, and more investigations should be conducted. However, it 
should be underlined that finding the reasons that may cause differences in the hazard 
estimates from ETAS and Omori models is anything but simple. Besides the apparent 
difference in how productivity and temporal distribution of  aftershocks are modeled, their 
spatial distributions can also affect the hazard estimates. As described previously, the spatial 
distribution of  background events in ETAS is estimated based on the declustered catalogs, 
while the distribution of  triggered seismicity is described with an isotropic kernel without 
considering the fault geometry. In the Omori model, the spatial distribution of  the 
aftershocks is modeled with a simple scaling law. The effect of  these assumptions needs 
further investigation but is outside our study’s scope. 

  
Figure 2.9. Annual rate of exceedance for (a) Norcia and (b) Perugia obtained using Omori and ETAS 

models. The conditional case (active ongoing sequences) is illustrated with a solid line and 

the unconditional case (average seismicity) with a dotted line.  
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2.8 DISCUSSION AND CONCLUSIONS 

The objective of  this study was threefold: (1) to estimate seismic hazard using the ETAS 
model, (2) to investigate the spatial variability of  the ETAS parameters, and (3) to compare 
hazard estimates from ETAS with those based on Poisson and Omori models. 

First, by comparing the MFD of  the historical CPTI15 catalogue with the MFD of  the 
ETAS-generated stochastic catalogues, we have shown that the ETAS model can 
adequately describe the past seismicity in the two considered regions in Italy. Furthermore, 
this study has shown that models based on the mainshock-only view of  seismicity are often 
used despite several limitations, leading to hazard estimates that are significantly lower 
compared to those obtained with more advanced tools capable of  accounting for the 
triggered seismicity, such as the Omori or ETAS models. In addition, a PSHA approach 
based on the ETAS model for simulating future seismicity also appears to be able, unlike 
the Omori model, to capture the temporal variation in seismic hazard both in quiet and 
active periods of  clustered seismicity. 

The application of  the ETAS model for seismic hazard estimation, however, is complex. 
There are many regions where an insufficient number of  active sequences have occurred 
in the (short and recent) period of  the earthquake catalog that can be considered as 
complete for lower magnitude events, as required by the method. Hence, our second 
objective was to investigate if  it is legitimate to use ETAS parameters' values from a region 
well constrained by data and apply them elsewhere. We have defined two regions, Central 
Italy (Region 1) and Southern Italy (Region 2), and used the recent instrumental HORUS 
catalog, which covers the period from 1981 to 2020, to calibrate the ETAS model. We 
found that the parameter estimates are different for these two investigated regions with 
similar tectonic environments. However, at least in the area considered, we can speculate 
that this discrepancy is more likely due to the scarcity of  sequences in the observed period 
rather than to intrinsic differences in the earthquake sequence phenomena. Our conjecture 
is supported by comparing the magnitude frequency distributions for M6+ events of  100 
ETAS simulated catalogs with the historical CPTI15 catalog covering the period from 1717 
to 2017. These findings show a better agreement between simulated and observed 
frequency distributions when the more robust values of  the ETAS clustering parameters 
from Central Italy are used to model sequences in the South, where sequences were scarce 
in the past few decades. 

Lastly, for the sake of  comparison, we have examined the classical Poissonian model that 
considers mainshocks only and the model that combines the Poissonian model for 
mainshocks and the Modified Omori law for modeling aftershocks (Omori model), which 
is considered to be an approach for clustered seismicity modeling less complicated than 
ETAS.  Since the Omori model is sensitive to the identification of  mainshocks, we have 
investigated three different declustering methods, namely Gardner and Knopoff  [1974], 
Reasenberg [1985] and Zaliapin et al. [2008]. We have found that these methods return 
catalogs with a different number of  events, different b-values of  GR law, different p-values 
of  the K-S test for assessing the suitability of  the Poisson distribution, different sets of  
Omori parameters’ values, and a magnitude-frequency distribution not comparable to the 
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observed one. Among the three, we favor GK74, which is the simplest and yields a catalog 
of  events with occurrences distributed more closely to the Poisson distribution. We have 
investigated if  the differences in the models described above significantly impact the hazard 
estimates, expressed in terms of  the annual rate of  exceedance of  ground motion intensity 
measures at two sites in Central Italy. We have first compared the Omori and Poisson 
models, using the three different declustering methods. We have illustrated that the results 
might vary depending on the declustering method adopted. We then compared the three 
alternative models (Poisson, Omori, and ETAS) using two different initial conditions: an 
‘unconditional’ case, with initial conditions characterized by average seismicity, and a 
‘conditional case’ whose initial conditions included an ongoing active earthquake sequence. 
As expected, our findings indicate that the traditional Poissonian approach for earthquake 
occurrence modeling tends to provide lower hazard estimates.  Taking the aftershocks in 
the Omori model and all the events in the ETAS model into consideration significantly 
increases the hazard estimates to more realistic values because it accounts for the effect of  
all earthquakes and not only those of  the largest ones. These promising results suggest the 
need to additionally investigate and improve the models used for describing spatiotemporal 
clustering. Furthermore, we have shown that the Omori and ETAS models yield similar 
hazard estimates during periods of  average seismic activity for particular sites and intensity 
measure. However, during periods of  increased activity, such as those following an active 
sequence, and for a site close to the sequence, the Omori model predicts lower hazard as it 
is unable to consider the temporally varying hazard stemming from the heightened initial 
conditions. 

There are several appealing features in the ETAS model: it incorporates the non-Poissonian 
nature of  the earthquake occurrence phenomenon, it does not require the somewhat 
arbitrary classification of  events into the mainshocks, foreshocks and aftershocks, it relies 
on the Gutenberg-Richter law of  the entire catalog circumventing the subjective choice of  
labeling mainshock, foreshocks and aftershocks,  it is adaptive, and it is well-suited for 
performance-based methodology as it does not neglect, unlike the Poisson and Omori 
models, any events that may increase the chance of  observing certain levels of  ground 
motions at a site. Although the use of  the ETAS model for hazard computations is 
undoubtedly promising, several aspects of  it can be improved. For example, fault geometry 
and anisotropic kernel for aftershock distribution, the time-varying magnitude of  
completeness, potential inter-sequence variability of  the parameters, time-dependent 
background rate, and effect of  the temporal and spatial window are some of  the traits that 
deserve further investigation. 
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3.INVESTIGATING REGIONAL CHARACTERISTICS OF 
EARTHQUAKE SEQUENCES: THE CASE OF CROATIA 
AND TURKEY 

3.1 INTRODUCTION 

As discussed at length in the previous section, spatial and temporal clustering of  the 
earthquake occurrences can be well described by the ETAS model. ETAS model is the 
combination of  the background seismicity, denoted as μ(x, y), which, for the sake of  
simplicity, is assumed to occur uniformly over time, and the triggered seismicity, 
characterized by the function g(t-tj,x-xj,y-yj,mj) that can be further described using temporal, 
productivity and spatial distribution. The overall rate of  earthquake occurrence, with 
magnitude m, at a specific point in space and time, conditioned upon the history of  prior 
earthquakes, Ht, can then be represented by the general form given by Equation (3.1) [Seif  
et al. 2017; Zhuang et al. 2004]: 
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The index j refers to all past earthquakes. The triggering function has the following form 
[Ogata 1998]:  
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For simplicity, the background rate, μ(x,y), can be expressed as μ(x,y) = v∙u(x,y), where v 
represents the total background rate and u(x, y) is the spatial distribution of  the background 
events. The productivity term k(mj)=Aeα(mj-mc) represents the mean number of  events directly 
triggered by an earthquake of  a magnitude mj, where mc is the minimum magnitude 
considered. Parameter A quantifies the overall triggering capability, independent of  
earthquake magnitude, while α governs the role of  magnitude; a larger α gives more 
influence to larger-magnitude events in terms of  triggering capability, while a smaller α 
places greater emphasis on the triggering capability of  smaller earthquakes. The temporal 
decay of  triggered earthquakes, v(t-tj)=(p-1) cp-1(t-tj+c)-p, is modeled by the Modified Omori 
law [Omori 1894; Utsu 1961], where the parameter p governs the temporal decay rate, and 
c represents a small constant denoting the delay between the end of  the triggering event 
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rupture and the start of  the triggered activity. The spatial distribution function used in this 
study is given by Equation (3.3)[Zhuang et al. 2004]: 
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Hence, the ETAS model can be characterized by a set of  eight correlated parameters: 
},,,,,,,{  qdpcAv= , in addition to the spatial distribution of  the background seismicity, 

u(x, y). These parameters are typically calibrated using empirical data from the region of  
interest.  

It is intuitive to expect that some ETAS parameters’ values depend on the seismotectonic 
characteristics of  the specific region. Ideally, one would distinctly consider regions with 
different seismotectonic characteristics and estimate the ETAS parameters’ values using 
empirical earthquake data specific to each region. However, there are often practical 
complications in doing so. There are many regions where an insufficient number of  active 
sequences have occurred in the (short and recent) period in which the instrumental 
earthquake catalog can be considered complete for lower-magnitude events or where the 
local instrumentation network is poor or missing altogether and, therefore, an instrumental 
catalog of  events complete to lower magnitudes is simply missing. Furthermore, even when 
sufficient data are available, it becomes challenging to account for parameter variation near 
the boundaries of  adjacent regions, as earthquakes in one region can trigger events in 
another, and vice versa. In Šipčić et al. [2022] (i.e., Chapter 2 of  this thesis), we investigated 
the feasibility of  using ETAS parameters derived from the well-constrained region in 
Central Italy and applying them to the Southern Italy region. Our preliminary findings 
indicate that the parameter estimates at first glance appear to differ between these two 
regions, despite their similar tectonic environments. However, based on several Turing-style 
tests [Page and Elst 2018], we concluded that this discrepancy is likely a consequence of  
the limited number of  observed sequences in Southern Italy rather than an indication of  
intrinsic differences in earthquake sequence phenomena. We argue that the values of  the 
parameters derived for the well-constrained region of  Central Italy are superior in 
describing the clustered seismicity in Southern Italy.  

Based on similar findings and recognizing the complexity of  ETAS model parameterization 
and aiming to develop a model suitable for areas lacking reliable earthquake catalogs, 
Mancini and Marzocchi [2023] introduced a simplified version of  the ETAS model called 
simplETAS. The underlying assumption behind simplETAS is that the clustering process 
in crustal regions is time and space-independent. In this approach, the values of  all the 
ETAS parameters, except for A (the triggering capability) and the total background rate v, 
are fixed using physical constraints and/or heuristic motivations based on the previous 
empirical findings.  A maximum likelihood method is then used to calibrate the values of  
the remaining two parameters. They demonstrated that while this approach may not be the 
top-performing clustering model possible, it can be considered a reliable forecasting tool 
for practical applications. 
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The objective of  this study is to explore ways to utilize the ETAS model more effectively, 
recognizing the importance of  incorporating clustered seismicity into classical hazard 
assessment and, at the same time, finding a balance between accuracy and practicality. To 
this end, we have collected data from two European regions, specifically Croatia and 
Turkey. In the following sections, we will compare the accuracy of  the ETAS model in 
three different setups: 

• Using the set of  ETAS parameters calibrated based on the Central Italy region 
(called the SCI parameter set), where many seismic sequences occurred and the 
catalogue used is of  good quality. 

• Using the set of  ETAS parameters calibrated based on the region of  interest 
(Croatia and Turkey) (called the SR parameter set). 

• Fixing all parameters of  the ETAS model to the values calibrated based on the 
Central Italy region, except for the total background rate v and the productivity 
term A, akin to the simplETAS methodology (called the SE parameter set). 

The first two setups are similar to the aforementioned exercise that involved Central and 
Southern Italy. The subsequent sections will delve into the available data in Croatia and 
Turkey, provide insights into how the ETAS model will be tested, and ultimately present 
and discuss the results. 

3.1 DATA 

The unclustered seismic catalog of  events for the region of  Croatia, obtained from 
Professor Herak [2023, personal communication], encompasses the geographical area of  
Croatia, including a buffer zone outside its borders, and it covers the period from 
20/02/1990 to 06/10/2021. It includes events with local magnitude ML greater than 3.45, 
above which it can be considered complete. To convert the local magnitude into moment 
magnitude (Mw), a conversion equation provided by Herak [2020] was employed. This 
conversion equation has been calibrated using data from the Croatian Earthquake 
Catalogue, specifically based on the analysis of  153 earthquakes recorded from 1959 to 
2020. 

Lw MM )027.0022.1()122.0106.0(  +−=  (3.4) 

For further analysis we only considered the events in the catalogue with Mw >3.4, resulting 
in a total of  727 events. Figure 3.1a displays the number of  events per year. Notably, there 
is a significant increase in the number of  events in 1996, primarily attributed to the Slot-
Slano earthquake that occurred on September 5th with an Mw of  5.9. This event was 
followed by numerous aftershocks, the largest of  which had an Mw of  5.5. Similarly, in 
March 2003, near the island of  Jabuka, an earthquake with an Mw of  5.5 occurred, which 
triggered several cascading events, as depicted by the second large peak in the same figure. 
Figure 3.1b illustrates the magnitude-frequency distribution of  the events in the catalogue 
with the Gutenberg-Richter law fitted to the data, and the b-value estimated using the 
approach of  [Aki 1965]. It is worth noting that the data do not perfectly align with the 
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fitted line. The Kolmogorov-Smirnov test rejected at the 5% significance level the 
hypothesis that data follow an exponential distribution. 

  
Figure 3.1. (a) The number of earthquakes per year and (b) magnitude-frequency distribution of 

events and Gutenber-Richter fit. Results refer to the data in the Croatian catalogue. 

Figure 3.2 shows the spatial distribution of  the events in the catalogue, before and after the 
declustering that we carried out using the algorithm developed by Gardner and Knopoff  
[1974], which is arguably the simplest and the most used method. This figure highlights 
significant clustering around 43.0°N and 18.0°E, which corresponds to the location of  the 
aforementioned Slot-Slano earthquake.  
 

 
Figure 3.2. The catalogue of events used for the region in Croatia: (a) before declustering and (b) after 

declustering. Dots represent the earthquakes’ epicenters, and their size and colour are 
magnitude-dependent. 

In the region of  Turkey, we obtained the catalogue from Erdik [2023, personal 
communication]. The catalogue spans over the period from 01/01/2000 to 12/05/2023 
and it covers the entire country. However, for our study, the region considered spans from 
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32.0°N to 44.0°N and 34.0°E to 42.0°E. Similarly to the case of  Croatia, Figure 3.3a 
displays the number of  events per year. The increased number of  earthquakes in 2011 can 
be attributed to the sequence that occurred near the city of  Van in October 2011, which 
included a mainshock with a magnitude of  7.1. The elevated number of  earthquakes in 
2023 is associated with the Kahramanmaraş sequence that began on February 6th and 
involved 53 events with Mw ≥5.0 out of  which two had Mw ≥7.5.  Figure 3.3b illustrates the 
magnitude-frequency distribution of  the events in the catalogue and the Gutenberg-Richter 
law fitted to the data, utilizing a minimum magnitude of  three. In this case, the 
Kolmogorov-Smirnov test indicated that the hypothesis of  exponential distribution cannot 
be rejected at the 5% significance level. Figure 3.4 displays the spatial distribution of  events 
in the catalog both before and after declustering. The declustering procedure yielded a 
catalog of  6742 earthquakes with Mw≥3.0 from the original of  18293 events. 

  
Figure 3.3. (a) The number of earthquakes per year and (b) magnitude-frequency distribution of 

events and Gutenber-Richter fit. Results refer to the data in the Turkish catalogue. 

 

 

Figure 3.4. The catalogue of events used for the region in Turkey: (a) before declustering and (b)  after 
declustering. Dots represent the earthquakes’ epicenters, and their size and colour are 

magnitude-dependent. 
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3.2 PARAMETRIZATION OF ETAS MODELS 

As referred to in the Introduction, we seek to compare different ETAS model 
parameterizations for the two considered regions. First, the spatial distribution of  
background events is estimated a priori from the declustered catalogues for both regions 
using the smoothed seismicity approach, with a correlation distance of  20 km [Frankel 
1995]. Figure 3.5 shows the daily rate density in each grid cell (events per day per square 
kilometer) that results from this operation. To estimate the values of  the ETAS parameters, 
the spatial distribution of  background events and the first two years of  the respective event 
catalogues are used as the conditioning period. This period corresponds to the years 1990-

1992 for Croatia and 2000-2002 for Turkey. The value of  α is held fixed to ln(10)b [e.g., 
Seif  et al. 2017; Zhang et al. 2020]. A minimum magnitude of  3.4 is used for Croatia, while 
for Turkey, a minimum magnitude of  3.5 is employed to avoid convergence issues of  the 
maximum likelihood estimator for lower magnitude values. This set of  parameters’ values 
is denoted as “SR”, indicating that it is calibrated based on the specific data from the region. 
Subsequently, the parameters’ values are re-estimated using the same assumptions, but with 
the difference that all parameters’ values are fixed to the estimates obtained from the 
Central Italy data except for the productivity A and of  the total background rate v, whose 
values are, of  course, estimated from the data of  the considered region. This set of  
parameters’ values is denoted as “SE”, referring to the simplETAS. Lastly, the set of  
parameters’ values calibrated based on the region in Central Italy is referred to as “SCI”. 

  
Figure 3.5. The background seismicity rate for (a) Croatia and (b) Turkey obtained using the 

smoothed seismicity approach and a Gaussian kernel with a correlation distance of 20km. 

It’s important to clarify that the total rate of  background events in a region is equal to the 
sum of  the rates obtained using the smoothed seismicity approach of  the declustered 
catalog, multiplied by the value of  the parameter v, which is estimated with the same 
maximum likelihood method used for all the other ETAS parameters. The parameter v, in 
this context, represents the ratio between the total background rate and the total rate of  
events in the declustered catalog. More specifically, if  the parameter v is the same for two 
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regions, then the ratio between background events and the events in the declustered catalog 
is the same for both regions. However, this assumption does not imply that the total 
background rate is identical in both regions. 

The estimated parameters’ values for all cases mentioned above are presented in Table 3.1. 
When comparing the background rate v from the SCI set of  parameters with the SR and 
SE sets, it becomes evident that the last two cases yield higher background rates for both 
regions. Additionally, the obtained values of p and c reveal that when SCI parameters are 
used, 50% of  the triggered events are expected to occur within one day. In contrast, the SR 
set suggests that it would take around 10 days for Croatia and more than a year for Turkey 
to reach the same 50% probability of  triggered events. It is important to note that these 
differences in the ETAS parameters’ values may be attributed to parameter bias, model 
deficiency, actual differences in the properties of  the earthquake phenomenon, or a 
combination of  all of  the above. To gain more insight, the following section compares 
these sets of  parameters’ values using Turing-style tests. This approach can help to shed 
light on the underlying reasons for the variations observed in the parameter estimates. 

Table 3.1. Estimates of the ETAS parameters’ values for the different cases considered 

ETAS parameters estimates SCI 
Croatia Turkey 

SR SE SR SE 
v 0.92 1.17 1.26 1.07 1.25 

A (events/day/km2) 0.093 0.11 0.081 0.078 0.04 

c (days) 0.02 0.03 0.02 0.03 0.02 

p 1.18 1.12 1.18 1.06 1.18 

d (km2) 0.9 4.46 0.9 0.27 0.9 

q 2.0 2.84 2.0 2 2.0 

γ (magnitude-1) 0.59 0.21 0.59 0.69 0.59 

 

3.3 TESTING THE PERFORMANCE OF DIFFERENT ETAS MODEL 

PARAMETERIZATIONS 

To assess the performance of  different ETAS model parameterizations, we simulated 500 
stochastic catalogues in the two considered regions using the SCI, SR, and SE sets of  
parameters’ values. In all simulations, a fixed b-value of  1.03, obtained from the data in 
Central Italy, is used for consistency. For Croatia, the conditioning period covers the years 
20/02/1990 to 20/02/1992, and the simulations span from 20/02/1992 to 20/02/2021. 
In the case of  Turkey, the conditioning period encompasses the years 12/05/2000 to 
12/05/2002, with simulations conducted from 12/05/2002 to 12/05/2023.  

First, in Figure 3.6, we compare the magnitude distribution of  the generated stochastic 
catalogues with the observed data for Croatia. It is evident that the median of  the 500 
simulations aligns well with the observed data in all cases. However, there is a slightly higher 
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dispersion in the low magnitude range when the SCI parameters are used. This effect may 
be attributed to the fact that this parameter set contains fewer background events and more 
triggered events, as indicated in Table 3.1.  

   
Figure 3.6. Magnitude–frequency distribution (MFD) of the events in the observed and stochastic 

catalogs obtained with different sets of parameters’s values for Croatia for the period of 
20/02/1992–20/02/2021. Solid grey lines represent the median of 500 stochastic 
catalogues while shaded area represents the 5th and 95th percentile. The blue line refers to 
the empirical data. 

In Figure 3.7,  we compare the ETAS model’s clustering behavior with that of  the observed 
seismicity adopting the analysis of  Zaliapin et al. [2008]. Basically, with this method,  the 
identification of  clusters is centered on estimating the proxy inversely proportional to the 
strength of  the “bond” between the two earthquake events. This proxy represents the 
nearest-neighbor distance, ηij, in a multidimensional domain (time, location, and 
magnitude), and it separates the space into two subdomains: one (with lower ηij values) 
likely contains clustered events, and the other (with higher ηij values) likely contains 
background events. The separation between the background and clustered modes is clear 
in all cases, with the background peak (the one on the right) being dominant. One can see 
that in the SCI case, the background peak is less pronounced, as expected given the 
obtained parameters’ values. Finally, we compared the median spatial distribution of  events 
in the stochastic catalogs. These values are derived by counting the number of  events within 
each grid cell and calculating the median across the 500 simulated catalogs. It is important 
to note that these values are normalized because our focus is on the spatial distribution 
rather than the actual rates. A simple visual inspection of  Figure 3.8 makes clear that all 
models effectively represent the spatial distribution of  events that was observed in the 
considered period.   
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Figure 3.7. The distribution of the nearest-neighbor distance, ηij, for Croatia, computed using the three 
considered sets of parameters’ values. The solid gray line refers to the median of 500 
ETAS-generated catalogs; the black one to the instrumental catalog and the dashed lines 

represent the 5th and 95th percentiles of the ETAS-generated catalogs. 

  

 

 

Figure 3.8. Normalized number of events for Croatia. The median of 500 stochastic catalogues is 

shown. Only grid cells with values above 1x10-4 are shown. 

The same set of  tests was conducted for Turkey. Figure 3.9 provides a comparison of  the 
magnitude-frequency distribution, indicating that the SR and SE parameter sets tend to 
underestimate the number of  events while the SCI set yields a good match. Additionally, it 
is noticeable that the dispersion in the lower magnitude range is low for the SR and SE sets, 
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implying that these sets might classify more events as background events when compared 
to the SCI set. As Figure 3.10 shows, the distribution of  the nij  proxy exhibits two distinct 
modes, which are almost equally prevalent. The clustering behavior is better described by 
the SCI parameter set, however, while both the SR and SE sets tend to overestimate the 
number of  background events (right peak).  

   

Figure 3.9. Magnitude–frequency distribution (MFD) of the events in the observed and stochastic 
catalogues obtained with different sets of parameters’s values for Turkey for the period of 
12/05/2000–12/05/2023. Solid grey lines represent the median of 500 stochastic 
catalogues while shaded area represents the 5th and 95th percentile. The blue line refers to 
the empirical data. 

   
Figure 3.10. The distribution of the nearest-neighbor distance, ηij, for Turkey computed using the 

three considered sets of parameters’ values. The solid gray line refers to the median of 500 
ETAS-generated catalogues; the black one to the instrumental catalog and the dashed 

lines represent the 5th and 95th percentiles of the ETAS-generated catalogs. 

When it comes to the spatial distribution of  events, a visual inspection of  Figure 3.11 shows 
that the obtained results are in good agreement with the pattern of  events in the 
undeclustered seismic catalogue (Figure 3.4b). It can be noticed that in the SCI case, events 
seem more diffused than in the other two cases, a pattern that may indicate that this set 
yields more triggered events than the other two. 
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Figure 3.11. Normalized number of events for Turkey. The median of 500 stochastic catalogues is 

shown. Only grid cells with values above 1x10-4 are shown. 

3.4 CONCLUSIONS 

The primary objective of  this study is to propose an optimal parameter set for the 
Epidemic-Type Aftershock Sequences (ETAS) model, a state-of-the-art method for 
modeling seismic sequences, to be applied in Croatia and the considered region of  Turkey. 
To achieve this, we explored various parametrizations of  the ETAS model. More 
extensively, this study tries to answer whether an ETAS-calibrated model based on a well-
constrained region can be applied to other regions with the same tectonic environment but 
with poorer or missing instrumental catalogs. 

Initially, we employed a parameter set calibrated based on the seismic activity in Central 
Italy, as demonstrated to be effective by Šipčić et al. [2022]. This set of  parameters (denoted 
here as SCI) was derived using the HORUS instrumental catalogue [Lolli et al. 2020] 
spanning from 1981 to 2020, with a completeness magnitude of  M3. It encompasses both 
quiet periods (absence of  clustering) and active periods (significant clustering), rendering it 
suitable for calibrating the ETAS model, which is highly sensitive to data quality. 
Subsequently, we estimated the ETAS parameters’s values using seismic data collected in 
the two specified regions (denoted here as SR): a catalogue of  earthquakes from 
20/02/1990 to 06/10/2021 with a completeness magnitude of  3.4 for Croatia, and another 
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catalogue spanning from 01/01/2000 to 12/05/2023 with a completeness magnitude of  
3.5 for Turkey. Finally, we fixed all ETAS parameters to the values of  the first set (SCI), 
except for the background seismicity rate v and productivity term A, which were calibrated 
based on the available data in the respective regions. 

To compare these different parameterizations, we generated for each parameterization 500 
stochastic catalogues for the periods 20/02/1992 to 20/02/2021 and 12/05/2002 to 
12/05/2023 in Croatia and Turkey, respectively. These catalogues were conditioned on the 
preceding two years of  seismicity. We then compared the magnitude-frequency 
distribution, clustering behavior (via the ηij proxy defined by Zaliapin et al. [2008]), and 
spatial distribution of  events with empirical data. Our findings revealed that in the case of  
Croatia, all defined parameter sets demonstrated good agreement with empirical data. 
Conversely, in the case of  Turkey, the SR and SE parameter sets underestimated the 
observed number of  events, predicting a more dominant background term than observed 
in the empirical catalogue. This discrepancy may be attributed to the poor quality of  the 
Turkish catalogue. We speculate that the underestimation of  the productivity term may be 
linked to “interrupted” data related to the seismic sequence that was initiated in February 
2023, which is likely still ongoing. Nonetheless, the SCI parameter set generated catalogues 
that aligned well with observations.  

Based on the findings of  this study, we can conclude that the set of  ETAS parameters’ 
values calibrated based on the Central Italy region, which is well-constrained, can be used 
to represent seismicity in Croatia and Turkey.  
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4.MODELING DAMAGE ACCUMULATION IN RC 
COLUMNS 

4.1 INTRODUCTION 

In the current Performance-Based Earthquake Engineering (PBEE)  framework [Cornell 
and Krawinkler 2000] the seismic performance of  a structure is evaluated by using 
performance measures that are meaningful to the stakeholders. Following the methodology 
developed by PEER, this framework encompasses four steps. Firstly, the seismic hazard at 
a site is characterized in a probabilistic manner, commonly via Probabilistic Seismic Hazard 
Analysis, or PSHA, in terms of  Mean Annual Frequency (MAF) of  exceeding 
predetermined levels of  a ground motion Intensity Measures (IMs) (e.g., spectral 
accelerations at given vibration periods) considered independently. Less frequently, seismic 
hazard is defined in terms of  MAF of  equaling multiple IMs considered jointly, in which 
case Vector-valued PSHA is used [Bazzurro 1998]. Secondly, response analysis is 
performed, using either static or dynamic analysis,  resulting in a vector of  engineering 
demand parameters (EDPs) (e.g., maximum inter-story drift or peak floor acceleration) that 
serve as predictors of  damage to structural components (e.g., columns or beams) or to the 
entire structure (in this study we will focus on components). This prediction yields the 
probability that different EDP values are reached or exceeded when the structure is subject 
to ground motions of  any given IM value. Subsequently, the damage measures (DMs), such 
as cracking, yielding, or fracture, which effectively reflect the condition of  the component 
and serve as an indicator of  the level of  damage sustained, are estimated based on these 
EDPs. Specific values of  these EDPs are then associated with the onset of  the 
aforementioned physical damage states. These two past steps are then joined to generate 
sets of  fragility functions, each one of  which provides the probability that the component 
will end up in a given damage state or worse should it experience a ground motion of  
different IMs. Lastly, DMs are related to the decision variable of  interest (DV), such as 
repair cost, downtime, fatalities, and, more recently, sustainability metrics [Wei et al. 2016].  

To perform a comprehensive loss assessment of  a single building, one first needs to identify 
anticipated damage mechanisms and, based on them, identify the component groups such 
as joints, beams, columns, or infill walls for which fragility curves need to be developed. 
Although damage can arise from complex relationships between damageability and 
component demands of  various types, as alluded to earlier the occurrence of  damage states 
within a component group is typically predicted using a single EDP. This parameter is 
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selected to be a reliable indicator of  the entity of  the damage and, therefore, of  seismic 
response.  

In this study, the focus is on assessing the damage sustained in reinforced concrete (RC) 
columns, which are the most critical elements in RC frame structures as the loss of  a 
column’s bearing capacity can result in severe structural damage and, eventually, in partial 
or complete structural collapse.  

Given the highly complex inelastic response of  RC buildings, numerous damage variables 
and indices have been proposed in the literature. The aim is to establish a correlation 
between the damage level (e.g., cracking and yielding) and demand quantities whose values 
can be calculated analytically. Peak noncumulative damage indices, such as ductility ratio, 
maximum inter-story drift, maximum rotation, stiffness degradation, and maximum 
curvature, have conventionally been favored due to their simplicity and practicality. In 
particular, maximum inter-story drift, although not a component-specific demand 
parameter but rather a story-specific one, has consistently demonstrated its effectiveness 
as the primary indicator of  potential damage in columns, as shown in several studies 
[Bearman 2012; Elwood et al. 2005; Pagni and Lowes 2006]. Its convenience lies both in 
its easy documentation during experiments and its calculation during numerical analysis. 
Experimental studies showed that peak noncumulative indices can effectively represent 
damage in well-detailed RC members that are not supposed to experience shear failure or 
bond-slip [Cosenza and Manfredi 2000] and their use may be suitable in cases when 
structures are subjected to impulse-type or short-duration ground motions. However, one 
can easily think of  a scenario where cumulative EDPs could be a more rational choice, such 
as in situations when structures are subject to very long ground motions, such as those 
caused by large-magnitude interface events occurring in subduction zones or when the 
accumulation of  damage is expected. Being able to reliably estimate cumulative damage is 
especially relevant in the aftermath of  severe earthquakes when financial constraints or 
short intervals between subsequent earthquakes limit the time available for repairs. We will 
focus on this latter case here. The recent seismic sequences, such as the 2010–2011 
Darfield-Christchurch in New Zealand [Shcherbakov et al. 2012], the 2011 Van in Turkey 
[Di Sarno et al. 2013], the Great East Japan Earthquake [Goda et al. 2013], the 2016-17 
earthquake sequences in central Italy [Sextos et al. 2018a], as well as the recent Zagreb-
Petrinja 2020-2021 earthquakes in Croatia [Atalić et al. 2021], highlighted the potential 
increase in building vulnerability due to limited repair opportunities and elevated hazard. 
Nonetheless, traditionally, when estimating risk, structures are assumed to be in pristine 
condition, an assumption that can lead to underestimating damage and losses, ultimately 
resulting in misinformed decisions. 

The impact of  adopting this assumption in assessing the risk of  RC structures has been 
investigated in several studies that primarily employed simplified models and 
noncumulative EDPs to assess the influence of  seismic sequences on the response of  
different structures. Recent studies have shed light on the limitations of  such EDPs. 
Baraschino et al. (2023) examined the efficacy of  inelastic peak displacement demand in 
describing the structural damage sustained during seismic sequences. Their findings 
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revealed counterintuitive results, suggesting that in certain instances, the probability of  
collapse decreased when considering pre-existing damage in the structure. Pedone et al. 
[2023] emphasized the advantages of  adopting energy-based EDPs in state-dependent 
fragility analysis, using a reinforced concrete building as a case study and highlighted the 
need to calibrate these EDPs further with experimental data. Ge et al. [2022] explored the 
performance of  RC bridge piers subjected to seismic sequences, comparing drift and 
energy-based performance measures through both experimental and analytical models, and 
concluded by stating the superiority of  energy-based metrics. Wen et al. [2017] studied a 
five-story RC concrete bare frame, and investigated the effectiveness of  different EDPs 
(peak roof  displacement, peak inter-storey drift, residual displacement and hysteretic 
energy). The conclusions were, again, that energy-based damage measures can more 
efficiently reflect the additional damage induced by seismic sequences. 

This study aims to delve into the modeling of  the progression of  damage in RC columns 
and focuses on the calibration of  a novel energy-based EDP based on the modified Park 
and Ang damage index [Kunnath et al. 1997; Park and Ang 1985]. This index is expected 
to effectively identify various damage states and, consequently, serve as a strong candidate 
for the development of  fragility and vulnerability curves in the realm of  clustered seismicity 
risk assessment. We first assemble a comprehensive database of  experimental tests 
conducted on RC columns and we provide a detailed description of  the characteristic 
points on the force-displacement curve, such as the cracking point and yield points 
extracted from the data, that are key elements in the proposed index calibration process. 
Subsequently, we define and describe the damage states based on the available experimental 
data and existing literature, categorizing the columns into those failing in flexure mode, or 
in shear mode, or in flexure-shear mode, as their responses can differ significantly. We 
proceed to calibrate the newly proposed damage index for each of  the aforementioned 
column failure modes using the assembled database. To validate the effectiveness of  the 
calibrated index, we compare its predictions with additional experimental tests reported in 
the literature. Lastly, we model several single-degree-of-freedom systems (SDOFs) and a 
multi-degree-of-freedom system (MDOF), subjecting them to back-to-back (B2B) 
Incremental Dynamic Analysis (IDA)[Vamvatsikos and Cornell 2002]. This analysis aims 
to explore the progression of  damage and reduction of  capacity under seismic sequences, 
employing both the proposed energy-based damage index and the more conventional peak 
displacement-based EDP. 

4.2 COLUMN  DATABASE 

To assemble the database of  experimental tests (we will refer to it simply as DB in the 
remaining text), we use two main sources: (1) data gathered by the ACI committee 369 
described in more detail in Sivaramakrishnan [2010], as the primary source for the database, 
and (2) the database developed for the SERIES research project, described in more detail 
in Perus et al. [2014]. These databases are built on the Pacific Earthquake Engineering 
Research Center (PEER) Structural Database [Berry et al. 2004], with some additional 
experiments extracted from published reports of  different authors. In the current version, 
only rectangular RC columns are included and all specimens are subjected to the pseudo-
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static cyclic loading. The compiled database provides force-displacement histories that are 
either obtained directly from the researchers or digitized from force-displacement plots in 
source documents. As the columns in the database have different test configurations (single 
cantilever, double-ended, double-curvature), for consistency, the provided force-
displacement histories are transformed to correspond to the cantilever case regardless of  
the test configuration. For each column the DB includes details about the geometrical and 
material properties, reinforcing details, test configuration, applied axial load, and other 
relevant information. In total, there are 370 specimens, 54 of  which are from the SERIES 
and 316 from the ACI369 database; 251 columns are flexure-dominated, 36 shear-
dominated and the remaining 83 flexure-shear dominated. More detailed description of  the 
assembled DB can be found in Appendix B1. 

In addition to the given properties, from the available force-displacement data we extracted 
the values corresponding to the characteristic points on the force-displacement curve, such 
as the cracking point, yield point, point of  the maximum applied load, and point where the 
ultimate displacement is reached. The cracking point corresponds to the point where 
flexural cracking occurs when the concrete tensile stress exceeds the tensile strength. The 
cracks mainly appear at the bottom and top 1/3 of  the column, perpendicular to its axis. 
To estimate the cracking point, we perform sectional analysis using the OpenSees software. 
We create the zero-length section with the fiber discretization of  the cross-section. We use 
the Steel02 uniaxial constitutive model to model the behavior of  steel with the yield strength 
as provided in the database, strain-hardening ratio equal to 0.01, and elastic modulus of  
210GPa. We use the Concrete02 uniaxial material model with compressive strength as given 
in the database for unconfined concrete. The ultimate strength of  concrete is taken as 
5MPa, tensile strength as 10% of  the compressive strength, tension softening stiffness as 
5GPa, strain at maximum strength as 0.002, and strain at ultimate strength as 0.005. The 
properties of  the confined concrete are then calculated using the Mander model. We apply 
axial load and rotation of  0.001 to the section (equivalent to curvature for a zero-length 

section) and, in this manner, we can get the moment-curvature M-ϕ curve and detect the 
point where the tensile strength of  concrete is exceeded. Once the curvature and moment 
at cracking are found, displacement and force are calculated as: 

L

M
F

L
d cr

cr
cr

cr =


= ,
3

2
 (4.1) 

where L is the shear span of  the column. It is assumed that the column is fixed at the base 
and that curvature varies linearly along its height.  

The point of  yielding is usually associated with longitudinal cracking (parallel to the axis of  
the column), the onset of  concrete spalling, or cracking at an angle (shear cracking). The 
definition of  the yielding point is not straightforward, and several approaches exist in the 
literature. To find this point we distinguish columns with flexure and shear mode failure. 
In the case of  flexure failure (and flexure-shear failure), we define the yield displacement 
as the sum of  the  displacements due to flexure, bar slip, and shear: 
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shysyfyy dddd ,,, ++=  (4.2) 

Flexural displacement, similarly to the displacement at cracking, can be found as: 
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To find yield curvature ϕy we again use the results of  the moment-curvature analysis. We 
define the point of  “first yield” as the one where either the first reinforcing bar yields in 
tension or the concrete reaches a maximum compressive strain of  0.002. Corresponding 

moment and curvature are noted as M’
y and ϕ’

y. The point of  “nominal yield” is defined as 
the point where either the concrete compressive strain of  0.004 or the steel tensile strain 

of  0.015 is reached. The corresponding moment is noted My and curvature at yield is found 
as: 
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In this manner, we obtained the idealized moment-curvature backbone curve, as illustrated 
in Figure 4.1a. Contribution of  the displacement due to slip is found following the 
methodology of  Elwood and Eberhard [2006]: 
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Where fs is the stress in the tension reinforcement (see Elwood and Eberhard [2006] for 
details), and u is the average bond stress between the longitudinal reinforcement and the 

footing, assumed as ][041.0 MPaf c .  Displacement due to shear, which usually has small 

values that can be neglected,  is estimated using Equation (4.6), and then the total 
displacement at yield is found using Equation (4.2).  
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As pointed out by Elwood and Eberhard [2006], the yielding point can be estimated as 
described above in cases where the maximum effective force measured is at least 105% of  
the force at yield. However, when pure shear occurs, the maximum force is reached before 
the first yield of  the section, and, in that case, we define the yield point using the secant 
method. We first define the yielding force Fy as 0.95 of  the maximum effective force, Fmax 
(without the P-delta effects). The yield displacement is defined as the point where the line 
that connects the zero point and the point on the force-displacement curve where 
F=0.5∙Fmax  intersects with the horizontal line passing through the 0.95∙Fmax  as illustrated 
in Figure 4.1b.     
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Figure 4.1.  Estimation of the yield point for (a) flexure-dominated columns (Test 25 from the DB) 

and (b) shear-dominated columns (Test 258 from DB). 

The capping point is the point at which the maximum force is attained, indicating the onset 
of  decay. The ultimate displacement is determined as the maximum displacement recorded 
during the experimental testing. However, these values pertain to the cyclic backbone 
response. To obtain the ultimate displacement under monotonic loading, we adhere to the 
guidelines of  ATC-2, which state that the plastic displacement dp under cyclic loading is 
considered to be 70% of  the plastic displacement observed under monotonic loading. 
Similarly, the post-capping displacement dpc under cyclic loading is estimated as 50% of  the 
corresponding displacement observed under monotonic loading (see Figure 4.2a). In some 
cases, the ultimate displacement under cyclic loading coincides with the capping 
displacement, indicating no loss in strength. In such cases, the ultimate displacement under 
cyclic loading was estimated as 1.1 times the displacement at the capping point under cyclic 
loading, which represents the lower bound value. 

As an example, we show in Figure 4.2b the response of  specimen C1-2 from Mo and Wang 
[2000] with displacement at yield, capping displacement, and ultimate displacement under 
cyclic and monotonic loading found as explained above. It is worth noting, however, that 
in some instances the aforementioned procedure for determining the characteristic points 
yielded results that lacked coherence. In these cases, the results were corrected through a 
visual examination of  the force-displacement curve and reference to the information 
provided in the reports of  the original experimenters, if  available. Alternatively, if  the 
correction was not feasible or reliable, the data was disregarded and flagged as unreliable. 
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Figure 4.2. (a) Idealized monotonic and cyclic backbone response (b) cyclic response of the specimen 
C1-2 from Mo and Wang [2000] (Test 107 from DB) with characteristic points indicated.  
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4.3 DAMAGE PROGRESSION IN RC COLUMNS 

Depending on the several critical parameters, such as axial ratio, reinforcement ratio, 
confinement details, etc. RC columns can experience failures either in flexure mode, or 
flexure-shear mode, or pure shear mode [Camarillo 2003]. In this section, we describe the 
damage progression in these different cases. In subsequent sections, for brevity, we refer 
to flexure-critical columns as FC, shear-flexure columns as SFC, and shear-critical columns 
as SC. 

The flexural mode of  failure in RC columns occurs when the shear force developed is 
below the shear strength. Typically, these column types can take relatively large lateral 
deformations.  To define the damage states, we rely on the experimental tests conducted 
by several researchers, as well as the accompanying reports and photos [Bae 2005; Bearman 
2012; Berry and Eberhard 2003; Borg 2015; Mo and Wang 2000; Sivaramakrishnan 2010; 
Tanaka 1990].  

• Damage state one (DS1) corresponds to the point where flexural cracking occurs 
when the concrete tensile stress exceeds the tensile strength. The cracks mainly 
appear at the bottom and top third of  the column, perpendicular to its axis. 
Additionally, this damage state includes longitudinal cracking (parallel with the 
column axis) near the column-beam interface, followed by the yielding of  steel 
bars in tension [Tanaka 1990; Mo and Wang 2000], the propagation of  cracks 
toward the inner part of  the column, and shear cracking (typically oriented at an 
angle of  35 to 65 degrees from the horizontal) [Bearman 2012]. Significant residual 
crack may occur (exceeding 1.5cm) requiring epoxy injections (ATC-58, Porter et 
al. [2006]).  

• Damage state two (DS2) is associated with the onset of  concrete cover spalling 
exposing the transverse but not the longitudinal reinforcement. Typically, it first 
occurs on the flexural side, but upon loading reversals, it also extends to the side 
faces. The onset of  concrete cover spalling is the first damage state where safety 
implications are possible (although marginal), and related repair costs might be 
high [Berry and Eberhard 2008]. The point at which the onset of  spalling occurs 
is usually associated with the maximum compressive strain being reached and, 
hence, can be associated with the point where maximum force is obtained.  

• Damage state three (DS3) is associated with a more significant spalling of  
concrete, with steel (also longitudinal) being exposed (ATC-58) at the top and the 
bottom of  the column and ties potentially starting to yield.  

• Damage state four (DS4) is associated with major safety implications and usually 
requires partial or total replacement [Berry and Eberhard 2008]. It corresponds to 
the buckling of  longitudinal bars (i.e., the bar is curved outwards), crushing of  the 
concrete core, bar fracture and loss of  axial capacity. DS4 corresponds to complete 
failure of  the column. Concrete crushing typically occurs when transverse 
reinforcement has yielded (usually due to the buckling of  longitudinal 
reinforcement).  
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In Figure 4.3a, as an example, we show the response of  a column subject to cyclic loading 
that fails in flexure with the damage description as reported by the authors [Mo and Wang 
2000].  

Columns that experience failure before flexural yielding are classified as SC columns. They 
are characterized by brittle failure and significant degradation in force-displacement 
behavior. Compared to FC columns, they can typically sustain lower deformations. As in 
the case of  flexure-dominated RC columns, to define the damage states associated with the 
progression of  damage, we use the experimental data provided by several researchers 
[Henkhaus et al. 2013; Lynn et al. 1996; Sezen 2000] along with the reports and photos 
accompanying these experiments.  

• Damage state one (DS1) corresponds to the point where we have flexure-shear 
cracks that are intersecting followed by the formation of  splitting cracks along the 
tensioned reinforcement and longitudinal cracks in the compressed concrete 
[Sezen 2000].  

• Damage state two (DS2) occurs before the failure of  the column and is associated 
with the widening and localization of  the shear cracks. This is followed by the 
spalling of  concrete.  

• Damage state three (DS3) is associated with the failure of  the column – 
longitudinal bar buckling which can occur quickly after the spalling of  the 
concrete, yielding of  transverse reinforcement, which triggers the crushing of  the 
concrete core, after which axial failure is reached. 

In Figure 4.3b we show the response of  a column subject to cyclic loading that fails in 
shear with the damage description as reported by the authors [Umehara and Jirsa 1982].  

   
Figure 4.3. Typical behavior of (a) flexure-critical column (specimen C1-2 from Mo and Wang [2000]) 

and (b) shear-critical column (specimen CUS from Umehara and Jirsa [1982]). 

The response of  the flexure-shear-dominated columns is the combination of  flexure and 
shear-dominated response previously described. First, the column behaves in a flexural 
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mode, with the damage progression corresponding to the damage states one and two in 
the flexure-dominated case. Then the specimen fails in the shear manner, as described in 
the damage state three of  the shear-dominated case.  

Table 4.1 provides a concise and clear synthesis of  the proposed damage states. 

Table 4.1. Description of damage states for different failure modes (FC:flexure-critical, FSC:flexure-
shear-critical, SC:shear-critical) 

 FC FCS SC 

DS1 

Flexural cracking and 
longitudinal cracking 
(parallel with the column 
axis) near the column-beam 
interface, followed by the 
yielding of steel bars in 
tension; significant residual 
cracks may occur; 

Flexural cracking and 
longitudinal cracking 
(parallel with the column 
axis) near the column-beam 
interface, followed by the 
yielding of steel bars in 
tension; significant residual 
cracks may occur; 

Flexure-shear cracking 
followed by the 
formation of splitting 
cracks along the 
tensioned reinforcement 
and longitudinal cracks in 
the compressed concrete; 

DS2 

The onset of concrete cover 
spalling exposing the 
transverse reinforcement; 
safety implications are 
possible (although marginal); 

The onset of concrete cover 
spalling exposing the 
transverse reinforcement; 
safety implications are 
possible (although marginal); 

Widening and localization 
of the shear cracks, 
followed by the spalling 
of concrete; 

DS3 

A more significant spalling 
of concrete, with steel being 
exposed at the top and the 
bottom of the column; ties 
potentially starting to yield; 

Failure of the column – 
longitudinal bar buckling, 
spalling of the concrete, 
yielding of transverse 
reinforcement, crushing of 
the concrete core, axial 
failure; 

Failure of the column – 
longitudinal bar buckling, 
spalling of the concrete, 
yielding of transverse 
reinforcement, crushing 
of the concrete core, axial 
failure; 

DS4 

Major safety implications; 
buckling of longitudinal 
bars, crushing of the 
concrete core, bar fracture, 
and complete failure of the 
column; 
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4.4 DAMAGE INDEX CALIBRATION 

Despite the attention that energy-based EDPs recently received in the research community, 
there is a limited number of  well-defined EDPs. One such example, arguably the most used 
one, is the rather old Park and Ang damage index [Park and Ang, 1985], which assumes a 
linear relationship between energy and deformation terms and is defined as follows: 
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where dmax represents the maximum displacement during the analysis, du,m represents the 

ultimate displacement under monotonic loading, dE represents the dissipated energy, Fy 

represents the yield force, and β is a parameter calibrated based on the experimental data. 
Dissipated energy is found by integrating the force-displacement curve as shown below: 
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where i is the number of  points used for discretization. Kunnath et al. [1997] later proposed 
a modified version of  the damage index by replacing displacement with curvature and 
subtracting the elastic term, resulting in:  
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In this equation, ϕmax represents the maximum curvature, ϕu,m represents the ultimate 

curvature under monotonic loading, ϕy is the yield curvature, My represents the yield 
moment and the remaining variables are defined as in the original DIPA.  

In this study, we consider the DI given by Equation (4.10) and proceed by calibrating the 
values of  the parameters in it based on our larger DB of  experimental tests.  
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Estimating the value of  the parameter β has been recognized as the critical component 
when using the proposed damage index and different authors have reported significantly 
dissimilar values based on their respective databases. [Cosenza et al. 1993] stated that 
observed values of  β range from -0.3 to 1.2, with a median value of  0.15. This value, derived 
from regression analysis of  experimental data, has been adopted in several studies. We 
calibrate the value of  β depending on the expected failure mechanism of  the column. To 
calibrate the damage index for flexure-critical columns, we use Equation (4.10) as the 
starting point. The ultimate displacement under monotonic loading, yield force and yield 
displacement are extracted from each experiment considered, as described in Section 4.2. 
Subsequently, using Equation (4.11) we determine the value of  the parameter β for each 
experiment, assuming that the damage index reaches a value of  one at the point of  collapse. 
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Out of  all the tests collected, we selected 90 experiments with reliable data (an additional 
5 experiments were retained for validation). In this manner, we obtained the median value 
of β=0.1, while the standard deviation of  the DI calculated with the median β is 0.31.  
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To reduce the variability, we modified the damage index by adding the parameter γ, as can 
be seen in Equation (4.12). Upon analyzing the data, we observed that the ratio between 
displacement and energy terms differs for cases with many cycles (at least 17) compared to 
those with fewer cycles. Therefore, using linear regression, we established a relationship 
between γ and the number of  cycles (as shown in Figure 4.4). By employing the proposed 
median value of  β=0.1 and calculating γ using the derived equation, we found that the 
standard deviation in the calculated damage index reduced from the initial 0.32 to 0.13. 
Note that the number of  cycles in this context, refers to the number of  cycles after the 
yielding point, not to the total number of  cycles. 
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To validate the proposed model, we used five experiments not included in the calibration 
process. We calculated the DI for each experiment and obtained the values of  1.00, 1.03, 
1.07, 1.02 and 0.86, which indicate that the damage index produces more than acceptable 
results.  

  
Figure 4.4. (a) Fitted linear regression between the number of cycles and γ parameter; scatter points 

refer to the experiments. (b) The distribution of the DI defined in two manners: using 
Equation (4.10) (DIMk) and using Equation (4.12) (DIN).  

It is important to highlight that although the proposed damage index reduces the standard 
deviation in DI given with Equation (4.10), it can be challenging to estimate the number 
of  cycles in practical applications. This difficulty arises from the ambiguity of  defining what 
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constitutes a cycle, which can vary depending on the context. Interested readers can explore 
various propositions from the literature (e.g. Hancock and Bommer [2005]). Even when 
clear criteria for defining a cycle are established, the task of  extracting this information for 
each ground motion can be time-consuming and computationally heavy. For the time being, 
as a practical alternative, we recommend using the DI given by Equation (4.10) to 
circumvent the complexities associated with cycle counting.  

We extend our investigation to include cases where specimens fail in shear and flexure-
shear modes. It is important to note that we had a significantly smaller number of  
specimens with good quality in these cases, specifically 36 for SC and 40 for FSC columns. 
Similar to the approach used in the previous section, we initially estimated the value of  
parameter β using Equation (4.11). The median value obtained for SC columns is 0.3, and 
the standard deviation in the damage index was found to be 0.2. A higher value of  β was 
expected considering that SC columns typically experience greater deterioration compared 
to FC ones. Upon introducing the parameter γ, we did not observe any correlation with the 
number of  cycles. Generally, these specimens exhibited lower dissipation of  energy and a 
reduced number of  cycles until collapse, in comparison to the FC columns. Nevertheless, 
we did observe a correlation between the ductility ratio µ (calculated as the ratio between 
ultimate and yield displacement) and the damage index, as demonstrated in Figure 4.5. By 
utilizing the equation illustrated in the figure, we re-calculated the damage index, resulting 
in a reduced standard deviation of  0.12.  

 
Figure 4.5. The fitted model between the ductility µ and parameter γ; scatter points refer to the 

experiments. 

Regarding FSC columns, we found no correlation between the parameter γ and neither the 
number of  cycles nor ductility. Consequently, we employed the damage index defined by 
Equation (4.10), using β =0.15 which was estimated as the median from the experiments. 
The standard deviation of  the damage index calculated in this manner is 0.19.  

The limited number of  experiments conducted in these cases precluded the allocation of  
some specimens solely to validation, namely excluding them from the calibration process. 
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Nevertheless, in the subsequent sections, we utilize shake table tests to at least partially 
validate the proposed indices. 

4.5 DI VALUES CORRESPONDING TO THE DAMAGE STATES 

Damage indices, in general, are normalized quantities ranging from 0 (no damage) to 1 
(total damage). Park et al. [1987] associated damage states with the damage index as follows: 
0<DI<0.2 corresponds to minor damage, 0.2 <DI<0.4 to moderate damage, 0.4<DI<1.0 
to severe (unrepairable) damage, and DI>1.0 to total collapse. Even though these values 
were proposed many years ago they are still widely used, to the authors’ knowledge,  
without further investigation. To determine the values of  the DI that correspond to the 
thresholds of  the proposed damage states given in Table 4.1, an extensive analysis was 
conducted on the available experiments that provided comprehensive descriptions of  
damage progression. The cases considered were again divided into three categories: FC, 
SC, and FSC columns. 

For the FC columns, a total of  17 experiments from the DB were utilized. For these 
experiments, detailed descriptions of  damage during cyclic tests were provided. For each 
experiment, the instances in the force-deformation history at which damage was reported 
by the respective authors were identified and linked to one of  the damage states. The 
corresponding DI values were then estimated using Equation (4.12). It should be noted 
that in most cases, however, the identification of  the instants corresponding to the reported 
damage description required determining the time step at which the damage occurred based 
on the figures provided by the authors. This process may have introduced some slight 
approximations that, however, we consider negligible for all practical purposes. 
Additionally, it is important to highlight that this procedure is not without limitations, as 
the damage observed during the experiment is typically reported at the end of  the cycle.  

To illustrate this procedure, Figure 4.6 presents the force-displacement plot for Unit 6 from 
Tanaka (test 23 from DB), where the authors reported damage occurrences such as first 
yielding of  tension reinforcement, first yield of  compression reinforcement, first crashing 
of  cover concrete, onset of  concrete spalling, opening of  ties, and commencement of  
buckling of  longitudinal reinforcement. One can see points corresponding to the yielding 
of  the steel, onset of  spalling and buckling which we associate with DS1, DS2 and DS4, 
respectively, from Table 4.1. The figure also displays the progression of  the proposed DI 
values and the associated reported damage. The ranges of  the DI values corresponding to 
each damage state reported in Table 4.2 are based on the fitting of  all the available 
experiments such as that considered here as an illustrative example.  
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Figure 4.6. (a) Force displacement plot for Unit 6 from Tanaka (test 23 in the DB) with the different 

damage occurrences indicated, as reported in the corresponding experiment and (b) the 

progression of the proposed DI with the same damage occurrences indicated.  

 

Table 4.2. Proposed DI ranges for FC columns and different damage states 

 
Median 

value 
16th - 84th 
percentile 

Proposed 
range 

Description of damage 

DS1 – – 0–0.2 
Flexural and longitudinal cracking, yielding 
of steel bars in tension, followed by shear 
cracking. 

DS2 0.28 0.2-0.50 0.2–0.4 
The onset of concrete spalling exposing the 
transverse reinforcement. 

DS3 0.53 0.44-0.65 0.4–0.75 
More significant spalling of concrete, 
longitudinal steel is exposed, the potential 
start of tie yielding. 

DS4 1.0 0.88-1.10 >0.75 
Major safety implications, bar buckling, 
concrete core crushing, fracture of the bars, 
complete failure. 

As already mentioned, our assembled DB contains limited experimental data in the case of  
shear and flexure-shear critical columns. Moreover, extracting information from the 
corresponding reports proved to be challenging in many cases. Therefore, we resorted to 
utilizing force-displacement histories to define the DI ranges for damage states for these 
columns. To characterize the damage states, we associated DS1 with the point of  yielding, 
DS2 with the capping point, and DS3 with either the point where the remaining capacity 
drops to 80% of  the original value or the point of  axial collapse if  reported during the 
experiment). Based on the obtained results, we propose the values given in Table 4.3.  
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It is important to note that the obtained results reveal a counterintuitive observation: the 
median value of  the DI associated with DS3 is significantly lower than 1. This discrepancy 
arises from the calibration process adopted here. The thresholds were established using 
either the point of  axial collapse or the point where the capacity drops to 80% of  the 
original value. In the latter case, although the specimen has not completely collapsed, it 
exhibits damage severe enough to be considered irreparable. Thus, the DI values 
significantly lower than 1 associated with the onset of  DS3 reflect the consideration of  
severe damage that occurs immediately prior to complete collapse.  

A similar procedure was followed for the FSC columns and the proposed ranges can be 
seen in Table 4.4.  

Table 4.3. Proposed DI ranges for SC columns and different damage states 

 
Median 

value 
16th - 84th 
percentile 

Proposed 
range 

Description of damage 

DS1 – – 0–0.25 
Flexure-shear cracking, formation of 
splitting cracks. 

DS2 0.27 0.15-0.4 0.25–0.45 
Widening and localization of the shear 
cracks, the onset of concrete spalling. 

DS3 0.73 0.45-0.90 >0.45 
Longitudinal bar buckling yielding of 
transverse reinforcement, crushing of 
the concrete core, axial failure. 

 

Table 4.4. Proposed DI ranges for FSC columns and different damage states 

 
Median 

value 
16th - 84th 
percentile 

Proposed 
range 

Description of damage 

DS1 - - 0–0.15 
Flexural and longitudinal cracking, yielding 
of steel bars in tension, followed by shear 
cracking. 

DS2 0.33 0.14-0.74 0.15–0.60 
The onset of concrete spalling exposing the 
transverse reinforcement. 

DS3 0.9 0.6-1.2 >0.60 
Longitudinal bar buckling yielding of 
transverse reinforcement, crushing of the 
concrete core, axial failure. 
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4.6 VALIDATION WITH THE SHAKE TABLE TESTS  

To further validate our results, we examined the available data from shake-table tests. We 
utilized the shake table tests column database compiled by Li [2012]. This database includes 
large-scale columns within two-dimensional frames, derived from seven shaking table test 
programs. It provides detailed information about column properties, including geometry, 
material composition, axial load, mode of  failure, etc. In total, the database comprises 59 
columns, with 36 categorized as non-ductile featuring inadequate confinement, and 23 
classified as ductile with sufficient transverse reinforcement. Specifically, for non-ductile 
flexure-shear critical columns, the database offers crucial details about each experiment, 
such as the point of  yielding, the capping point, and the point at which columns experience 
axial failure. For 23 columns from the shake table tests available, we identified the time step 
at which these points occurred and associated them with the damage states outlined in 
Table 4.4. More specifically, we associated the point of  yielding with DS1, the capping point 
with DS2 and the point of  axial failure with DS3. For each damage state, we calculated the 
DI using Equation (4.10) and β value of  0.15, as the considered columns are classified as 
FSC. Displacement at yield was extracted from the corresponding references while the 
ultimate displacement under monotonic loading was found using the ultimate displacement 
under cyclic loading, which is extracted from the experimental data, following the guidelines 
of  ATC-2, as explained in Section 4.2.  

As mentioned in the Introduction, drift is commonly employed as an EDP. Therefore, for 
comparison, we also determined the drift values associated with the indicated damage states 
for these 23 tests. To accomplish this, we referred to the research conducted by Bearman 
[2012], who utilized data and results from [Bae 2005; Berry and Eberhard 2003; Sezen 
2000]. They distinguished between cases characterized by low and high axial loads, 
emphasizing the distinct patterns of  damage progression observed in each scenario. 
Specimens with an axial load ratio below 0.5 were categorized as having low axial loads, 
while those with an axial ratio equal to or greater than 0.5 were classified as having high 
axial loads. Table 4.5 shows the proposed maximum drift values corresponding to different 
failure modes and levels of  axial load. Specifically, "LAL" denotes low axial load, while 
"HAL" indicates high axial load.  

For each considered test, the obtained values of  DI and the associated maximum drift 
values can be found in Appendix B2. These values are compared with the damage states 
defined in Table 4.4, in the case of  DI, and with the values defined in Table 4.5, in the case 
of  maximum drift. It should be highlighted that in the latter case, DS3 and DS4 were 
merged into one DS (i.e. DS3) and that all columns considered here have a low axial load 
ratio and are FSC.  
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Table 4.5. Values of maximum drift (%) associated with different damage states 

Failure mode FC SC FSC 

Axial load LAL HAL LAL HAL LAL HAL 

DS1 0.3-1.5 
0.5-1.0 

0.25-2.0 
0.25-1.75 

0.3-1.5 
0.5-1.0 

DS2 1.5-2.0 2.0-2.5 1.5-2.0 

DS3 2.0-4.0 1.0-2.0 >2.5 >1.75 2.0-2.5 1.0-1.75 

DS4 >4.0 >2.0 - - >2.5 >1.75 

The proposed DI predicts the DS1 and DS3 well in all tests while DS2 is satisfactorily 
predicted in all but three out of  23 tests. Similarly, drift effectively predicts DS1 and DS3 
in all cases, but it tends to overestimate the damage associated with DS2 in 17 out of  23 
tests (more than 70% of  cases). As an example, Figure 4.7a illustrates the experimental 
results for Test 8. Estimated values of  DI for DS1, DS2 and DS3 are 0.01, 0.4 and 1.04 
which means that they are well predicted when compared with the values in Table 4.4. On 
the other hand, values of  maximum drift associated with these damage states (1.0%, 2.77% 
and 4.98%) indicate that DS2 is not well predicted (see FSC/LAL column in Table 4.5). In 
Figure 4.7b we show the results for Test 21 from Table B.3. Estimated values of  DI are 
0.01, 0.23 and 0.86, while the maximum drift are 1.2%, 1.81% and 2.48% for DS1, DS2 
and DS3, respectively, which means that both EDPs in this case predict the damage state 
well.  

  
Figure 4.7. Hysteretic response of the columns from shake table tests with the indicated damage 

states: (a) NCREE 2005-P2-C1 (Test 8 in Table B.3) and (b) Shin 2005-III-Test 10-Chile-

0.24-West C (Test 21 in Table B.3) 

It is crucial to emphasize that additional experimental data are necessary to validate the 
effectiveness of  the proposed DI and to make meaningful comparisons with drift. 
Specifically, having experimental data under mainshock-aftershock sequences would be 
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particularly beneficial in order to test how well the reduction of  capacity is captured by the 
proposed DI.  

4.7 MODELLING OF  RC COLUMNS 

As mentioned earlier, in most cases the nonlinear behavior of  RC frames is predominantly 
concentrated at the ends of  their members. Therefore, we considered it reasonable and 
computationally efficient to model these elements as elastic with rotational springs at the 
ends and assigned phenomenological laws (so-called lumped plasticity approach). Previous 
studies have explored various types of  phenomenological laws, ranging from simple elasto-
plastic models to more complex curvilinear hysteretic models that incorporate the 
deterioration of  strength and degradation of  stiffness. It has been demonstrated that 
strength deterioration and stiffness degradation can lead to a significant increase in peak 
displacement demand, particularly when structures are subjected to a large number of  
cycles, such as during earthquake sequences. As a result, several degrading 
phenomenological laws have been developed in the past, incorporating stiffness 
degradation, pinching, cyclic degradation, in-cycle degradation, or a combination of  these 
[Ibarra et al. 2005; Kunnath et al. 1991; Leborgne and Ghannoum 2013].  

Phenomenological nonlinear models are appealing as they allow us to account for the 
aforementioned phenomena by calibrating the model based on relevant experimental data. 
However, it is important to note that these models rely on empirical observations rather 
than fundamental mechanics principles, and estimating cyclic deterioration parameters can 
be particularly challenging since experimental tests are typically conducted for either 
monotonic or cyclic loading protocols, but not both. Additionally, a limitation of  these 
models is that they do not consider the interaction between the bending moment and axial 
load (M1-M2-N interaction). As emphasized in Taucer et al. [1991], the axial load in 
columns can undergo significant fluctuations during ground motion, and the response of  
an element is generally influenced by its loading history. Moreover, energy dissipation is 
closely related to the axial load [Haselton et al. 2007], underscoring the importance of  
incorporating this interaction in the modeling process. On the other hand, fiber-based 
models, whether displacement-based [Bazant and Bhat 1977] or force-based [Spacone 
1996], inherently account for M1-M2-N interaction. Nonetheless, employing such a model 
comes with substantial computational costs and may require modeling bar slip, rebar 
buckling, and fatigue which can cause numerical instabilities. Due to these considerations, 
we opted for the perhaps less refined but certainly simpler and more stable lumped 
plasticity approach. 

As described in the Introduction, the behavior of  a structural element depends greatly on 
the hierarchy of  its strength, leading to the classification of  RC columns based on their 
failure mechanism, namely flexural mode failure, shear mode failure, and flexure-shear 
mode failure. In response to the increasing interest in modeling shear-dominated columns, 
the research community has proposed several approaches of  varying complexities. Earlier 
attempts, such as those by Spacone [1996] and Zeris and Mahin [1991], involved modifying 
flexure elements to incorporate the shear response. Elwood [2004] introduced a modeling 



Nevena Šipčić 

 

64 

technique that utilized a shear spring in conjunction with a nonlinear beam-column element 
to simulate shear behavior. They developed a hysteretic uniaxial material with strength 
degradation to represent the shear spring, which was implemented in OpenSees. Once a 
critical lateral drift value was reached, strength degradation commenced, simulating shear 
failure as captured by the shear spring. Jeon [2013] later adopted this model due to its 
computational efficiency and demonstrated its good agreement with experimental findings. 
However, this model did not account for pinching or cyclic degradation. To address these 
limitations, Leborgne and Ghannoum [2013] extended the model by incorporating a 
rotation-based shear spring instead of  a drift-based one, accounting for pinching and cyclic 
degradation. As these approaches possess limited applicability and rely on a single hysteretic 
model within OpenSees, O’Reilly and Sullivan [2019] used uncoupled shear spring 
aggregated into the lumped plasticity beam-column element. This modeling approach 
implies that the weaker of  the two mechanisms (shear and flexure) would govern. The 
shear spring was described using a backbone curve with 4 phases, and its characteristic 
points were determined using expressions from Zimos et al. [2015].  

Following De Risi et al. [2022] our approach entails an initial step of  pre-classifying the 
columns to determine the anticipated mode of  failure. Based on the expected mode we 
define the phenomenological laws at the member ends, using in that manner a single spring, 
which is a more practical and computationally efficient approach. Different empirical 
approaches have been proposed in the literature to classify columns based on their design 
parameters (e.g., axial load ratio, shear span, amount of  reinforcement, etc.) and/or their 
bearing capacity. Recently, machine-learning techniques have gained popularity as an 
alternative method for column classification, utilizing basic design parameters as input 
variables and failure modes as outputs [Feng et al. 2020; Mangalathu et al. 2019]. 

However, within this study, we adopt a simpler procedure outlined by De Risi et al. [2022]. 
This approach utilizes the ratio between plastic shear demand Vp and shear strength Vn, 

transverse reinforcement ratio ρ’’, and aspect ratio a/d. The shear strength can be expressed 
as follows [Sezen and Moehle 2004]: 
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where Ag is the column gross cross-section area; N is the column axial load,  fc’ is the 
concrete compressive strength (in MPa), Asw is the area, fyw yielding strength, and s the 
spacing of  the transverse reinforcement; a is the shear span while d is the effective height 
of  the cross-section. The factor k defines the shear strength degradation with increasing 

displacement ductility  . If  Vp/Vo≥1 then the column is defined as shear-dominated, if  

Vp/Vo≤0.7 as flexure dominated and if  1<Vp/Vo<0.7  as flexure-shear dominated.  
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4.7.1 Flexure-critical columns 

To model the RC columns that fail in flexure we use the hysteretic model developed by 
[Ibarra et al. 2005], referred to as IMK model in the following text. The IMK model, which 
includes in-cycle and cyclic degradation directly modeled as a function of  dissipated energy, 
has been extensively used as it showed good agreement with the experimental results. 
However, its performance entirely relies on the robust definition of  the parameters’ values, 
which in most cases are derived from empirical relations based on experimental data 
[Haselton et al. 2007; Panagiotakos and Fardis 2001]. The parameters used to describe IMK 
law can be divided into two groups: one describing monotonic response and another 
describing cyclic response. Figure 4.8 displays the model’s monotonic backbone curve and 
Table 4.6 provides a description of  the parameters. 

  

Figure 4.8. The backbone curve of the component model developed by Ibarra et al. [2005] (IMK) 

First, we find the yielding moment My using the cross-sectional analysis. Then, using the 
predictive equations proposed by Haselton et al. [2007], which were obtained based on the 
extensive database of  255 RC members from the PEER database (220 flexure critical and 
35 flexure-shear critical), we derive the ratio between the secant stiffness and gross stiffness, 
and the rotation at yield θy (assuming that we have a cantilever) with Equations (4.15) and 
(4.16), respectively:  
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The capping moment Mc and plastic rotation at capping θc,pl  can be found using Equations 
(4.17) and (4.18), respectively. Summing Equations (4.16) and (4.18) one can get the 
rotation at the capping point θc. To get the ultimate rotation we can sum θc with the post-
capping rotation θpc given by Equation (4.19).  
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To estimate the cyclic deterioration parameters’ values, we assume that λS, λC, λA and λK  are 
equal [Lignos and Krawinkler 2011] and we utilize Equation (4.20) to calculate them.  The 
rate of  cyclic degradation (cs, cc, cA, cK) is set equal to one (i.e., a constant rate of  
deterioration) following the recommendations from the literature [Haselton et al. 2007].  
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It is important to consider the limitations of  using these predictive equations, as they have 
been developed based on a limited dataset. Specifically, the tests utilized focus solely on 
flexure-dominated columns with deformed bars and often are not tested up to the point 
of  failure. 

Table 4.6. Description of the parameters used to define the IMK model 

Parameter Description Parameter Description 

Ke Initial stiffness  −+
cc  ,  

Capping plastic rotation in the positive 
and negative direction 

−+
yy MM ,  

Yield moment in the 
positive and negative 

direction 

−+
pcpc  ,  

Post-capping rotation in the positive 
and negative direction 

−+
yy  ,  

Yield rotation in the 
positive and negative 

direction 
Kc Post-capping stiffness 

KS Hardening stiffness cS, cC, cA, cK   
rate of strength, post-capping, 

reloading stiffness and unloading 
stiffness degradation 

−+
cc MM ,  

Capping moment in the 
positive and negative 

direction 
λS, λC, λA, λK   

cyclic deterioration parameter for 
strength, post-capping, reloading 
stiffness and unloading stiffness 

degradation 

To validate the modeling process explained, we use the Scientific Toolkit for OpenSees 
STKO [Petracca et al. 2017]. The experimental tests were modeled as cantilever columns, 
comprising an elastic beam-column element and a zero-length rotational spring described 
with the IMK law, as illustrated in Figure 4.9. In OpenSees we used ModIMKPeakOriented02 
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unixial material model as proposed by [Ribeiro and Barbosa 2015]. More details about the 
model can be found in Appendix B3. By employing the loading protocols from the 
corresponding experiments, we conducted cyclic pushover analysis and recorded the base 
shear force and top displacement. As an illustrative example, Figure 4.10a shows a good 
match between experimental and numerical results for Test 8 from the DB.  

  
Figure 4.9. Experimental setup and the numerical model in STKO 

 

4.7.2 Shear and flexure-shear-critical columns 

When columns are categorized as shear-dominant and susceptible to failure through shear 
or flexure-shear, it is common to model them using a simplified backbone curve with only 
two points representing peak and collapse [ATC 2017; Risi et al. 2022]. For the sake of  
simplicity and practicality, in our study we decided to employ the same IMK model used 
for flexural-critical columns (Figure 4.8). However, we define the characteristic points of  
the curve differently. For columns dominated by flexure-shear, the yield moment is 
estimated using sectional analysis, the same as for the flexure-critical columns. For shear-
critical columns, however, we utilize a predictive equation proposed by [Lee and Han 2018] 
and represented by Equation (4.21). This equation, which was derived from a 
comprehensive analysis of  40 shear and flexure-shear critical columns, employing 
multivariate regression techniques, demonstrated a good agreement with experimental 
results. The remaining points were estimated in the same manner for both FSC and SC 
columns. The initial stiffness (Ke in Figure 4.8) was determined using their proposed 
equation, denoted by Equation (4.22) here. Based on an examination of  specimens in the 
database, we assumed that the capping moment is 1.08 times the yield moment, a value that 
aligns with the findings of  [O’Reilly and Sullivan 2019] when investigating older reinforced 
concrete structures prone to shear failure. Additionally, the post-capping stiffness Kc was 
set to 0.2 times the initial stiffness Ke. The rate of  deterioration parameter, c, was kept 
constant at one, and the cyclic deterioration parameter, λ, was determined using Equation 
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(4.20) proposed by Haselton, following the approach for flexure-critical columns. We 
recognize that strictly speaking this approach is limited to FC columns, as the equation by 
Haselton was derived solely from data for such columns, but we had to adopt it due to the 
scarcity of  data and information regarding cyclic deterioration parameters for shear-
dominant and flexure-shear-dominant columns. The failure point is found by assuming a 
moment of  zero, with the corresponding rotation calculated as proposed by Elwood et al. 
[2005] and given by Equation (4.23). 
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Similarly to the case of  FC columns, to validate the proposed approach we compared the 
available experimental data with the numerical results obtained using the STKO model. 
Figure 4.10b shows a good match for Test 252 from the DB.  

  
Figure 4.10. Cyclic pushover comparison of experimental and numerical results obtained using STKO 

model and IMK model for (a) Test 8, FC column, and (b)Test 252, FSC column. P-delta effects 
are removed.  

 

4.8 NUMERICAL PREDICTION OF DAMAGE STATE PROGRESSION  

In the previous sections, we demonstrated that the Modified Ibarra model represents 
realistically the behavior of  RC columns under cyclic loading, and, based on the available 
experimental data, we calibrated the DI, which can be used as an EDP, to ascertain which 
damage state the column is in after an earthquake. In the following, our objective is to 
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compare the damage predicted by our proposed DI vis-à-vis that predicted with the more 
conventional, displacement-based EDP. Additionally, we aim to investigate the extent of  
capacity reduction foreseen by these two EDPs when the structure is subjected to 
mainshock-aftershock sequences. For that purpose, we will derive damage-dependent 
fragility curves for five structures, four simple SDOF systems and a four-story RC bare 
frame  3D structure.   

4.8.1 Analysis set-up 

The comparison is done using this analysis set-up. We decided to conduct back-to-back 
incremental dynamic analysis (B2B-IDA), a method that builds upon the original IDA 
technique and extends it to derive fragility curves dependent on the initial damage state. To 
perform the analysis we use a set of  30 ground motion records from the NGA2-West 
database, as explained in more detail in Bakalis et al. [2018]. The initial step involves 
subjecting an intact structural model, to each of  the 30 input ground motions (GMs) 
individually, with successive scaling until the considered system collapses.  

To calculate the fragility function, we assume it follows a lognormal distribution. Based on 
the results of  the structural analysis, we estimate the median and standard deviation of  the 
fragility function using the method of  moments [Baker 2015] as follows: 
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where 


is the estimate of  the median intensity measure (IM) level associated with the 

exceedance of  the damage state and 


 the estimate of  the standard deviation of  ln(IM) 

of  the fragility function. The number of  ground motions considered is n, while IMi is the 
intensity level corresponding to the onset of  the DS for the ith ground motion. 

For each ground motion, we then determine the scale factors by which we need to scale it 
to obtain a ground motion strong enough to be “damaging”. By that, we mean a ground 
motion that is supposed to bring the structure to an initial damaged state (IDS) larger than 
DS0 (i.e., no damage). We subsequently carried out IDA again by applying the 30 ground 
motions incrementally, this time on the structure that was already damaged. With the 
resulting data, we then fit the fragility curves, using Equations (4.24) and (4.25). In this 
manner, we obtain fragility curves that are conditioned on the initial damage state of  the 
structure. 
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4.8.2 RC columns 

(a)  Results for systems representing SC columns  

We first consider two SDOFs that are expected to experience a shear mode of  failure, each 
with a fundamental period, T1, of  0.2 seconds. The IMK model is characterized in a manner 
to resembles the columns that we have in the DB, which are expected to exhibit shear 
behavior. The ductility (found as the ratio between the displacement at the capping and the 
yielding point) of  the model is set to 2.5 while two different cyclic parameter λ 
characterizations are investigated: one that reflects systems with a moderate rate of  cyclic 
deterioration (λ=50) and another that reflects systems with a rapid rate of  cyclic 
deterioration (λ=25). In the following text, these models will be denoted as MS1 and MS2, 
with “M” referring to the model, “S” to shear mode, and “1” and “2” to systems with 
medium and rapid cyclic deterioration, respectively.  

The 30 selected GMs are scaled at 13 Sa(T1) intensity levels corresponding to intensities 
ranging from 0.075g to 0.7g and nonlinear response history analyses (NLRHA) are run on 
the intact system. For each conducted analysis we recorded the value of  DI, found with 
Equation (4.12) where β=0.3 and γ is found as indicated in Figure 4.5. Upon analyzing the 
IDA curves of  the intact system and based on the investigation conducted in the previous 
sections, we defined three DS, which represent light damage, moderate damage and severe 
damage, respectively. These damage states are defined in terms of  the two EDPs, namely 
DI and maximum ductility (found as the ratio between the displacement at the top of  the 
SDOF and displacement at the yielding point). The description of  the damage states is 
given in Table 4.7. To bring the SDOF systems to IDS1 we scaled the ground motions in 
such a way that the resulting DI is in the range between 0 and 0.25 Similarly, for IDS2 the 
ground motions were scaled such that the resulting DIs are in the range between 0.25 and 
0.45. For SDOFs to reach IDS1 defined in terms of  maximum ductility, we scaled the 
ground motions so that the resulting ductility is in the range between 0 and 2.0, and to 
reach IDS2 we scaled them so that the resulting ductility is in the 2.0 to 4.0 range. Note 
that the ductility values used are fully consistent with the corresponding DI values for 
defined damage states.  

Table 4.7. Damage states used for MS models in terms of DI and the maximum ductility 

 DI Maximum ductility Description of damage 

DS1 0-0.25 1.5-2.0 
Flexure-shear cracking, formation of splitting 

cracks 

DS2 0.25-0.45 2.0-4.0 
Widening and localization of the shear cracks, 

onset of concrete spalling; 

DS3 >0.45 >4.0 

Longitudinal bar buckling yielding of 
transverse reinforcement, crushing of the 

concrete core, axial failure; 
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Figure 4.11 and  Figure 4.12 show the IDA curves for intact damage state and model MS1, 
along with collapse fragility curves conditioned on the different IDSs, using DI and 
maximum ductility as an EDP, respectively. Similarly, we show the results for MS2 in Figure 
4.13 and Figure 4.14. It's evident that in all cases, the fragility curves shift leftward, as 
expected, indicating a reduction in structural capacity with increasing initial damage. 
However, for both MS1 and MS2, the reduction in collapse capacity is more pronounced 
when DI is employed as an EDP. This suggests that DI may be more effective at capturing 
the effects of  damage accumulation. Notably, the reduction in collapse capacity is more 
significant for MS2 due to its greater cyclic degradation. 

  
Figure 4.11. (a) IDA curves for the intact MS1 SDOF system, highlighting initial damage states for one 

ground motion, (b) Collapse fragility curves of the same system conditioned on the initial 

damage state. DI is used as an EDP. 

  
Figure 4.12. (a) IDA curves for the intact MS1 SDOF system, highlighting initial damage states for 

one ground motion, (b) Collapse fragility curves of the same system conditioned on the 
initial damage state. Maximum ductility is used as an EDP.  
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Figure 4.13. (a) IDA curves for the intact MS2 SDOF system, highlighting initial damage states for 

one ground motion, (b) Collapse fragility curves of the same system conditioned on the 
initial damage state. DI is used as an EDP. 

  
Figure 4.14. (a) IDA curves for the intact MS2 SDOF system, highlighting initial damage states for 

one ground motion, (b) Collapse fragility curves of the same system conditioned on the 

initial damage state. Maximum ductility is used as an EDP. 

The superior ability of  DI to capture the reduction in capacity can also be observed when 
the capacity refers to damage states less severe than collapse. To provide support to this 
statement, we calculate for MS2 the probability of  exceeding a ductility of  2.0 and a DI of  
0.25, conditioned on the IDS1. These two thresholds correspond to the onset of  DS2 for 
SC columns. The resulting fragility curves for DS2 in Figure 4.15 make evident that DI 
results in a more substantial reduction in DS2 capacity as well. For brevity, we present 
results only for MS2 but similar conclusions hold for MS1. 

To provide a clearer perspective on these differences, Figure 4.16 illustrates the reduction 
in collapse capacities and DS2 capacities for both models and EDPs. For instance, when 
ductility is used as the EDP, the collapse capacity of  MS1 decreases by 4% and 7% for 
IDS1 and IDS2, respectively. However, when DI is used, this reduction is 23% and 55%, 
significantly higher than the reduction observed with ductility although the thresholds for 
onset of  collapse are consistent in both EDPs. In the case of  MS2, where cyclic 
degradation is more pronounced, the reduction is even greater. Specifically, with ductility, 
the reduction is 7% and 12% for IDS1 and IDS2, while with DI, the reduction is 27% and 
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59%. Similarly, when it comes to the reduction in DS2 conditioned on the IDS1, one can 
see in Figure 4.16b that the reduction predicted with maximum ductility is 9% and 12% 
and 57% and 60%, for columns MS1 and MS2, respectively.  

  
Figure 4.15. (a) Probability of exceeding DI of 0.25 (i.e., DS2) and (b) maximum ductility of 2.0 (i.e., 

DS2) conditioned on the IDS1. Results for model MS2 are illustrated. 

  
Figure 4.16. Reduction in the (a) collapse capacity and (b) DS2 capacity, conditioned on the initial 

damage state for shear-dominated columns MS1 and MS2. Solid bars refer to the case 
when maximum ductility is used and hatched when DI is used. 

(b) Results for systems representing FC columns 

The same approach has been applied to an SDOF system that is expected to fail in flexural 
mode. This system, with a fundamental period of  0.2 seconds, has been characterized using 
the IMK model to simulate columns in our database, which are anticipated to exhibit 
flexural behavior. The ductility capacity of  the model at collapse has been set to 4, and we 
have employed different cyclic deterioration parameters, as in the previous case. These 
models are designated as MF1 and MF2, where “F” denotes flexural mode failure, and “1” 
and “2” correspond to λ=50 (moderate rate of  cyclic deterioration) and λ=25 (rapid rate 
of  cyclic deterioration), respectively. For each conducted analysis we recorded the value of  
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DI, found with Equation (4.10) where β=0.1. In this case, we have defined four damage 
states in terms of  DI and maximum ductility, as described in Table 4.8.  

To bring the SDOF systems to IDS1, we have scaled the ground motions to achieve the 
DI values in the range between 0 and 0.20. For IDS2, the range is between 0.20 and 0.40, 
and for IDS3, it is within the range of  0.4 to 0.75. Alternatively, when using maximum 
ductility as the EDP, IDS1 is reached when the response to scaled ground motions has a 
ductility ratio in the range between 0 and 2, IDS2 when the ductility ratio is between 2 and 
3.5 and, finally, IDS3 when the ductility ratio ranges from 3.5 and 6.  

As observed in the previous case of  shear-dominated models, all fragility curves have 
shifted leftward, indicating a reduction in capacity. Again, this reduction is more 
pronounced when DI is used, as depicted in Figure 4.17 and Figure 4.19, compared to 
when maximum ductility is employed, as illustrated in Figure 4.18 and Figure 4.20.  

Table 4.8. Damage states used for MF models in terms of DI and the maximum ductility 

 DI 
Maximum 
ductility 

Description of damage 

DS1 0-0.20 0-2.0 
Flexural and longitudinal cracking, yielding of steel bars in 

tension, followed by shear cracking 

DS2 0.20-0.40 2.0-3.5 
The onset of concrete spalling exposing the transverse 

reinforcement 

DS3 0.4-0.75 3.5-6.0 
More significant spalling of concrete, longitudinal steel 

is exposed, the potential start of tie yielding 

DS4 >0.75 >6.0 
Major safety implications, bar buckling, concrete core 

crushing, fracture of the bars, complete failure 

 

  
Figure 4.17. (a) IDA curves for the intact MF1 SDOF system, highlighting initial damage states for 

one ground motion, (b) Collapse fragility curves of the same system conditioned on the 
initial damage state. DI is used as an EDP. 
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Figure 4.18. (a) IDA curves for the intact MF1 SDOF system, highlighting initial damage states for 
one ground motion, (b) Collapse fragility curves of the same system conditioned on the 

initial damage state. Maximum ductility is used as an EDP.  

  
Figure 4.19. (a) IDA curves for the intact MF2 SDOF system, highlighting initial damage states for 

one ground motion, (b) Collapse fragility curves of the same system conditioned on the 
initial damage state. DI is used as an EDP. 

  
Figure 4.20. (a) IDA curves for the intact MF2 SDOF system, highlighting initial damage states for 

one ground motion, (b) Collapse fragility curves of the same system conditioned on the 
initial damage state. Maximum ductility is used as an EDP. 
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Similarly to the previous case, we have investigated the reduction in capacity for less severe 
damage states, focusing on ductility values of  3.5 and DI values of  0.40, corresponding to 
the DS3. The obtained results are shown in Figure 4.21. Once again, it is evident that DI 
predicts more reduction in capacity.  

  
Figure 4.21. (a) Probability of exceeding DI of 0.40 (i.e., DS3) and (b) maximum ductility of 3.5 (i.e., 

DS3) conditioned on the IDS1 and IDS2. Results for model MF2 are illustrated. 

In Figure 4.22 the reduction in collapse and DS3 capacities is illustrated for both FC models 
and EDPs.  

  
Figure 4.22. Reduction in the (a) collapse capacity and (b) DS3 capacity, conditioned on the initial 

damage state for flexure-dominated columns MF1 and MF2. Solid bars refer to the case 

when maximum ductility is used and hatched when DI is used. 

For model MF1, when ductility is used as the EDP, the collapse capacity decreases by 2%, 
7%, and 13% for IDS1, IDS2, and IDS3, respectively. However, when DI is employed, this 
reduction is 6%, 13%, and 31%. In the case of  MF2, characterized by more pronounced 
cyclic degradation, the reduction is even more substantial. Specifically, with ductility, the 
reduction is 6%, 12%, and 28% for IDS1, IDS2, and IDS3, while with DI, the reduction is 
12%, 29%, and 54%. When it comes to the reduction in DS3, when maximum ductility is 
employed reduction is 1% and 4% for MF1 and IDS1 and IDS2, respectively, while for 
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MF2 is higher (5% and 12%). On the other hand, more reduction is predicted with DI, 
10% and 40% for MF1 and 15% and 42% for MF2, conditioned on the IDS1 and IDS2, 
respectively. 

4.8.3 RC bare frame structure 

(a) Description and modeling of  the frame 

The same exercise described in Section 4.8.1 is repeated for the RC bare frame structure 
designed in accordance with the previous Italian code [DM 1996]. The building, measuring 
28.0m x 18.0m in plan area, consists of  four stories, each with a height of  3.5m, resulting 
in a total building height of  14.0m. The concrete used is assumed to have a compressive 
strength of  30 MPa, while the reinforcement steel has a yield strength of  440 MPa. Figure 
4.23 provides a plan view of  the building, denoting the column sections on the first two 
floors. For the third and fourth floors, the column section names are enclosed in 
parentheses. Although not explicitly depicted in the figure, beams are color-coded for 
clarity – green lines correspond to Section 9, orange lines to Section 10, and grey lines to 
Section 11. Table 4.9 provides details about the geometry (width B and height H) of  each 
column and beam section within the building. Longitudinal reinforcement consists of  Ø20 
diameter bars, while transversal reinforcement comprises Ø8 bars spaced at 200 mm for all 
beams and columns. Values of  the structural, non-structural, and live load that are applied 
on the building are shown in Table 4.10. The weight of  beams and columns is calculated 
separately and added to the loading. 

Table 4.9. Geometry (width B and height H) of the column and beam sections 

Section S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

Width B (mm) 350 500 400 450 300 450 350 450 300 800 1000 
Height (mm) 500 350 400 900 450 300 350 900 600 240 240 

 

Table 4.10. Loads applied on the building 

 Structural Non-structural Live load 

Floor level 3 kN/m2 2 kN/m2 2 kN/m2 
Roof  level 3 kN/m2 1 kN/m2 2 kN/m2 

The building is modeled in OpenSees as a 3D MDOF system using the pre- and post-
processor STKO [Petracca et al. 2017], as illustrated in Figure 4.24. It is assumed that the 
building is fixed at the base and that diaphragms are rigid, i.e. nodes at each floor are linked 
through a rigidDiapgrahm constrain in the plane orthogonal to the global Z axis. To perform 
gravity and modal analysis all members in the building are modeled using elasticBeamColumn 
element defined in OpenSees, with the geometry as specified in Table 4.9. The moment of  
inertia of  the members is adjusted using the empirical relationship proposed by Haselton 
et al. [2007] as expressed in Equation (4.15). The floor masses are computed based on dead 
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loads and 30% of  live loads, and they are lumped at the nodes of  each floor according to 
the tributary area.  

On this model, we first performed gravity and modal analysis. Table 4.11 shows the periods 
of  oscillation for the first five modes, along with the corresponding participating masses 
(PMF) and cumulative participating masses (∑PMF). Notably, fundamental periods in X 
and Y directions are similar, with the cumulative mass participation exceeding 90% after 
the first 5 modes. 

 
Figure 4.23. Plan of RC bare frame building, with the column section names of 1st and 2nd story 

indicated. Column section names of 3rd and 4th storey are given in parentheses. Beams 
sections S9, S10, and S11, are color-coded using green, orange and grey, respectively.  
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Figure 4.24. 3D model of the building made using STKO 

Table 4.11. Periods and participation masses for translational (X and Y) and rotational degrees of 

freedom. The first five modes of oscillation are shown.  

Mode Period (s) 
PMFX  

(%)  
PMFY  

(%) 
PMFXY  

(%) 
∑PMFX  

(%) 
∑PMFY  

(%) 
∑PMFXY  

(%) 

1 1.08 0 80.2 0 0 80.2 0 
2 1.02 82.1 0 0 82.1 80.2 0 
2 0.81 0 0 82.3 82.1 80.2 82.3 
4 0.34 0 12.7 0 82.1 92.9 82.3 
5 0.34 12.1 0 0 94.2 92.9 82.3 

To perform the nonlinear static (i.e. pushover) and dynamic analysis we modeled beams 
and columns using the lumped plasticity approach and HingedBeam element in STKO, i.e. 
elastic beam-column element with two zeroLenght rotational springs at its ends in OpenSees. 
Each spring is defined using IMK model for both X and Y direction. Characteristic points 
of  the IMK model are defined, assuming at first that all members would experience a 
flexural mode of  failure and following the procedure described in Section 4.7.1. Preliminary 
pushover analyses are then performed in both horizontal directions using linear lateral force 
distribution and setting the top floor center of  mass as the control node, to provide the 
maximum shear demand Vp in each column. These values are then compared with the 
shear strength Vn and columns are classified as flexure, shear or flexure-shear dominated, 
as explained in more detail in Section 4.7. Subsequently, rotational springs are redefined 
based on the mode of  failure, and pushover analyses are performed again. Figure 4.25a and 
Figure 4.26a illustrate the results in terms of  the total base shear and maximum inter-story 
drift in the X and Y directions, respectively. Figure 4.25b and Figure 4.26b show the inter-
story drifts along the height of  the building, in the X and Y directions, respectively. The 
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frame exhibits higher capacity in the Y direction, and the drift demand gradually increases 
from top to bottom in both directions. 

 

 

Figure 4.25. (a) Pushover curve obtained for the X direction and (b) inter-story drifts (IDR) along the 

height of the building 

 

 

Figure 4.26. (a) Pushover curve obtained for the Y direction and (b) inter-story drifts (IDR) along the 
height of the building 

Finally, we run NLRHA, adopting the Rayleigh damping model with a 5% damping ratio 
proportional to the current stiffness matrix. The analysis employs the same 30 GMs as in 
Section 4.8.1. As a conditioning IM we use Sa(1.0s), determined as the geometric mean of  
the values extracted from the two horizontal ground motion components.  

(b) Damage state definition 

We use two approaches to define the damage states for the building of  interest: 

(i) The global approach where maximum inter-story drift (MIDR) is used as an 
EDP; 

(ii) Component-based approach (also called local) where the DI defined in 
Section 4.4 is used.  
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In the global approach, we use the results of  the pushover analysis, IDA curves and 
recommendations from the literature [Rossetto and Elnashai 2003] to define four damage 
states, as given in  Table 4.12.  

Table 4.12. Damage states used for the RC building in terms of MIDR (global approach) 

 
Proposed MIDR 

range (%) 
Description of the damage 

DS1 1.2–1.75 
Slight damage, start of structural damage; hairline cracking in 
beams and columns near joints (<1mm). 

DS2 1.75–2.6 
Flexural and shear cracking in most beams and columns. Some 
yielding in a limited number. Shear cracking and spalling are 
limited. 

DS3 2.6–4.3 
Loss of bond at lap-splices, bar pull-out, broken ties. The main 
rebar may buckle, or the element may fail in shear. 

DS4 >4.3 Shear failure of many columns of impending soft-story failure.  

When it comes to the component or local approach we estimate the DS of  every column 
in the building. To do so, we use the moment-rotation results (to obtain dissipated energy 
by integration) and the properties of  each column, to find the DI in both horizontal 
directions and at both ends of  the column. The final DI of  the column is then found as 
the maximum value between the two directions and two ends, as shown in Equations (4.26) 
and (4.27).  

},max{ jicolumn DIDIDI =  (4.26) 
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=
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For FC columns we defined four damage states (Table 4.2), while for the SC and FSC 
columns, we defined three damage states (Table 4.3 and Table 4.4, respectively). To make 
the procedure straightforward FC columns in DS2 and DS3 are reclassified as DS2 
columns, and FC columns in DS4 are reclassified as DS3. This ensures that each column 
in the building is categorized into one of  the three damage states. Once the DS for each 
column is defined, to ascertain in which damage state the entire building is we follow the 
global damage classification of  the AeDES inspection forms [Baggio et al. 2007] where we 
consider only vertical elements. Based on the local damage states, referred to here as DSL, 
and based on the extent of  these DSLs (<1/3; 1/3-2/3; >2/3), the building is classified 
into one of  the four global DS, as described in Table 4.13. More specifically, if  there are 
columns in DSL1 and none in DSL2 it means that the building is in DS1. If  fewer than 
1/3 of  the total number of  columns in the building is in DSL2, then the building is 
designated as DS2. If  more than 1/3 of  the columns are in DSL2 and none in DSL3 then 
the building is in DS3. Finally, if  there are any columns in DSL3 the building is labeled as 
being in DS4.  
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Table 4.13. Damage states defined for the RC bare building using the local approach. In this case DS 
refers to the global damage state of the entire building while DSL refers to the damage 
state of the components (columns here). Extent refers to the percentage of components 
in the corresponding DSL.   

Global DS of 
the building  

Local 
DS 

Extent  
Description of the damage 

DS1 DSL1 
<1/3 

1/3-2/3 
>2/3 

Slight damage, start of structural damage; hairline 
cracking in beams and columns near joints (<1mm). 

DS2 DSL2 <1/3 
Flexural and shear cracking in most beams and 

columns. Some yielding in a limited number. Shear 
cracking and spalling are limited. 

DS3 DSL2 
1/3-2/3 

>2/3 

Loss of bond at lap-splices, bar pull-out, broken ties. 
The main rebar may buckle, or the element may fail 

in shear. 

DS4 DSL3 
<1/3 

1/3-2/3 
>2/3 

Shear failure of many columns of impending soft-
story failure.  

 

(c) Results 

Once the damage states are defined using both approaches, we run NLRHA on the intact 
building. Figure 4.27 shows the obtained IDA curves in terms of  the MIDR with the 
defined damage states highlighted and corresponding fragility curves. In the component 
approach, however, it is not possible to obtain IDA curves as there is no continuous global 
EDP. Instead, for illustration, we show in Figure 4.28a the results for all GMs as stripes 
associated with DS achieved and corresponding IM level. In Figure 4.28b fragility curves 
for the four DS defined in Table 4.13 are illustrated. One should note that the fragilities 
obtained with these two approaches are similar (see Table 4.14).  

  
Figure 4.27. (a) IDA curves for the intact building, highlighting thresholds in terms of MIDR 

associated with the damage states defined in Table 4.12. (b) Corresponding fragility 
curves.  
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Figure 4.28. (a) Results of IDA for the intact building associated with the damage states defined in 

Table 4.13, using the component approach. (b) Corresponding fragility curves. 

 

Table 4.14. Values of the fragility function parameters obtained for the 
intact building with global and component approach 

Approach: Global Component 

Parameter: Median Standard deviation Median Standard deviation 

DS1 0.27 0.22 0.22 0.25 

DS2 0.4 0.21 0.4 0.15 

DS3 0.54 0.20 0.55 0.17 

DS4 0.62 0.26 0.59 0.22 

 

Exploiting the results of  the intact building, we performed IDA again, this time on the 
building that was already damaged. More specifically, we defined two IDSs, by scaling the 
GMs to the drift values of  1.4% and 2.1% that classify the building as being in IDS1 and 
IDS2, respectively, with both considered approaches. After some inspection, we concluded 
that, when the structure is in IDS3 it is so close to collapse that it would not make sense to 
obtain the collapse (DS4) fragility curve when the building is in this initial damage 
condition. Hence, we omitted it. Figure 4.29a and Figure 4.29b show the fragility curves 
obtained using the global approach conditional on IDS1 and IDS2, respectively. In Table 
4.15 estimated median and standard deviation values are shown. One can see that for IDS1, 
the median DS4 capacity reduces by 35% while for IDS2 by 45%. When it comes to DS3 
this reduction is 35% and 53% for IDS1 and IDS2, respectively.  
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Figure 4.29. Fragility curves for different damage states conditioned on (a) IDS1 and (b) IDS2. Global 

approach and MIDR as an EDP are used. 

 

Table 4.15. Estimated parameters(median and standard deviation) of the fragility curves for different 
damage states. Global approach and MIDR as an EDP are used. IDS refers to the initial 
damage state and DS to the final damage state.    

IDS: Intact IDS1 IDS2 

Parameter: Median 
Standard 
deviation 

Median 
Standard 
deviation 

Median 
Standard 
deviation 

DS1 0.27 0.22 - - - - 

DS2 0.4 0.21 0.26 0.64 - - 

DS3 0.54 0.20 0.34 0.68 0.26 0.75 

DS4 0.62 0.26 0.40 0.72 0.34 0.77 

Figure 4.30a and Figure 4.30b show instead the fragility curves obtained using the local 
approach conditional on IDS1 and IDS2, respectively, while Table 4.15 reports the 
estimated median and standard deviation values. Compared to the global approach one can 
see that there is more reduction in capacity in this case. More specifically, for IDS1 the 
median DS4 capacity reduces by 48% while for IDS2 by 70%. When it comes to DS3 this 
reduction is 53% and 77%, for IDS1 and IDS2, respectively. 
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Figure 4.30. Fragility curves for different damage states conditioned on (a) IDS1 and (b) IDS2. Local 

approach and DI as an EDP are used. 

 

Table 4.16. Estimated parameters(median and standard deviation) of the fragility curves for different 
damage states. Local approach and DI as an EDP are used. IDS refers to the initial 
damage state and DS to the final damage state.    

IDS: Intact IDS1 IDS2 

Parameter: Median 
Standard 
deviation 

Median 
Standard 
deviation 

Median 
Standard 
deviation 

DS1 0.22 0.25 - - - - 

DS2 0.4 0.15 0.17 0.45 - - 

DS3 0.55 0.17 0.25 0.70 0.12 0.70 

DS4 0.59 0.22 0.31 0.75 0.18 0.76 

 

4.9 DISCUSSION AND CONCLUSIONS  

In the seismic risk assessment, particularly when considering the impact of  clustered 
seismicity, it is crucial to employ numerical models capable of  accurately capturing cyclic 
degradation phenomena. Furthermore, the importance of  the EDP which can predict well 
the progression of  damage induced by the repetitive ground motions and effects of  the 
damage accumulation in the cases when the interval between the events in the sequence is 
too short to repair the building, has been highlighted in multiple studies. The objective of  
this section was to investigate different modeling approaches when it comes to RC columns 
and to propose an EDP that can be considered suitable to model damage accumulation in 
the context of  clustered seismicity.  

We first assembled a comprehensive database of  experimental tests on rectangular RC 
columns that are subjected to cyclic pushover. The compiled database provides force-
displacement histories that were either obtained directly from the researchers or digitized 
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from force-displacement plots in source documents. In total, there are 370 specimens, 251 
were categorized as flexure critical (FC), 36 as shear critical (SC) and the remaining 83 as 
flexure-shear critical (FSC). For every test in the database, we provided a detailed 
description of  the characteristic points on the force-displacement curve, such as the 
cracking point, yield point and the ultimate point. Subsequently, reviewing the existing 
literature and investigating the experimental database assembled, we defined and described 
the damage states recognizing the distinct responses of  columns failing in flexure, shear, 
or flexure-shear modes. 

We then calibrated an energy-based EDP based on the modified Park and Ang damage 
index for the three defined column types (FC, SC and FSC), using the experimental results. 
The performance of  the proposed EDP was additionally validated against the results of  
the shake-table tests. Comparisons with the commonly adopted drift-based EDP 
demonstrated the superior efficacy of  the proposed index in predicting damage 
accumulation more accurately. 

Subsequently, we focused on the numerical modeling of  the RC columns using the lumped 
plasticity approach and the Modified Ibarra material model. We chose this model due to its 
capability to capture cyclic and in-cycle degradation phenomena effectively. We again 
considered different modes of  failure, proposing different approaches for FC and for FSC 
and SC columns. To validate our modeling choices we used the Scientific Toolkit for 
OpenSees STKO [Petracca et al. 2017] to model the columns in the experimental database 
using the elastic beam-column element and a zero-length rotational spring described with 
the Modified Ibarra model. By employing the loading protocols from the corresponding 
experiments, we conducted cyclic pushover analysis and compared the numerical and 
experimental results showing a good match.   

In the last part of  the study, we wanted to explore the progression of  damage and reduction 
of  capacity under seismic sequences, utilizing both the proposed energy-based damage 
index and the more conventional peak displacement-based EDP. We first modeled four 
SDOFs using the Modified Ibarra constitutive model, two that fail in shear mode and two 
that fail in flexure mode, with different cyclic degradation properties, and we ran B2B-IDA 
with the 30 ground motions. Our results showed that the proposed DI predicts more 
reduction in capacity, compared to maximum ductility,  for all considered  SDOFs and 
across all damage states. Finally, employing the described modeling choices we made a 3D 
model of  the bare RC frame building and ran B2B-IDA with the same set of  30 ground 
motions. We considered two approaches: the global approach where maximum inter-story 
drift was used as an EDP and the component (or local) approach where local damage states 
of  the vertical elements (i.e. columns) are first assessed using DI and then combined to 
estimate the global DS of  the structure. Similarly as in the case of  SDOFs, our results 
indicated that with the local approach and proposed DI more significant decrease in 
capacity is predicted.  

While our findings are promising and indicate that the proposed EDP can accurately 
predict the damage of  the RC columns, we acknowledge that there is still a lot of  research 
ground to be covered in this field at least on two fronts. First, more experimental tests, 
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including shake-table tests and data from the real instrumented buildings after the 
occurrence of  each significant event in a sequence are essential to gain insights into 
modeling the accumulation of  damage caused by seismic sequences. Second, in this section, 
we focused solely on RC columns while other components, depending on the structure of  
the interest, might be significant (e.g., infills, joints). Of  course, we believe that further 
analyses are necessary to determine to which extent and for which structures modeling 
damage accumulation is critical in risk assessment that considers seismic sequences.  

To conclude, it is important to highlight that the findings of  this section are relevant not 
only in the cases when we intend to predict damage caused by seismic sequences but also 
when we intend to model the progression of  damage in RC buildings that experience long-
duration ground motions, such as those caused by large magnitude events in active crustal 
areas or subduction zones.  
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5.PRACTICAL ISSUES IN MAINSHOCK GROUND 
MOTION RECORD SELECTION FOR BUILDING 
SPECIFIC RISK ASSESSMENT 

5.1 INTRODUCTION 

To estimate the probability of  damage and/or losses of  a structure at a specific site over a 
period of  time, it has become customary to use analytical rather than empirical approaches 
primarily due to the scarcity of  historical damage and loss data. These analytical approaches 
separate the contributions of  seismic hazard, expressed as the rate of  occurrence (or 
exceedance) of  one or more ground motion Intensity Measures (IMs), from the 
contribution of  structural response, described via one or more engineering demand 
parameters (EDPs). The relationship between IM(s) and EDP(s) is established through 
nonlinear response history analyses (NLRHA), conducted with preselected ground 
motions, and it is subsequently used to derive fragility functions, representing the 
probability of  exceeding EDP values associated with the onset of  given damage states 
should different levels of  IM(s) occur at the site. Although the response of  a structure to 
three-component ground motions depends on many characteristics of  the motions, in 
most applications, the link between seismic hazard and structural response is left to one 
single ground motion IM (used as input to the fragility function). This state of  practice is 
followed even though it is well known that different ground motions with the same level 
of  the selected IM but different values of  the other characteristics cause different levels of  
response. It is hence necessary to select judiciously the record sets that represent the seismic 
hazard at the site of  interest (i.e., to enforce hazard consistency), a concept that has been 
highlighted many times in the literature [Bradley, 2010; Baker, 2011; Jayaram et al., 2011; 
Spillatura et al., 2021]. With the results of  NLRHA, one can derive fragility functions 
anchored to specific values of  the EDP corresponding to the onset of  damage states (e.g., 
minor damage, major damage, or collapse). With the results of  hazard and fragility analysis 
response (or demand) hazard curves can be estimated, which represent the rate of  
exceeding different EDP values in a given period of  time. 

Fragility functions are often assumed to follow a lognormal distribution with mean µln(IM) 
and standard deviation σln(IM). Ideally, to obtain robust estimates of  mean and standard 
deviation, and in turn response curves, one should select the sets of  hazard-consistent 
ground motions (GMs) that accurately match the target distribution of  intensity measure 
(IM) with one of  the available hazard-consistent record selection variants. As in most 
applications it is customary to compute the hazard at a ‘‘reference rock’’ condition (we will 
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simply call it “rock” here), it would be necessary to have an extensive database of  real 
ground motions recorded on the rock. Unfortunately, this is often not the case, particularly 
when it comes to the GMs with high levels of  shaking. In practice, this problem is 
circumvented by using recordings on both rock and soil conditions scaled (often 
significantly) to the desired amplitude levels. While this alternative is a practical 
workaround, there is a legitimate concern that it might bias the structural response 
estimates. To mitigate the extent of  this undesirable consequence, when using real ground 
motions, analysts often screen the ground motion database before record selection by, for 
instance, by limiting the values of  magnitude (M), distance (R), soil shear wave velocity in 
the top 30 m (Vs30), or maximum scaling factor (SF) [Baker and Lee 2018]. This screening 
identifies ground motions more consistent with those that may be experienced at the site, 
but it can have the negative effect of  significantly reducing the number of  record candidates 
for selection, a condition that may lead to a poor fitting of  the target spectrum [Tarbali and 
Bradley 2016]. Hence, the analyst needs to find the balance between the rigidity in choosing 
the constraints and the goodness of  fit of  the targets, not knowing how much bias, if  any, 
is introduced by this balancing act. The potential bias introduced by excessive ground 
motion amplitude scaling has been investigated in several studies in the recent literature.  
[Luco and Bazzurro 2007] showed that ground motion scaling could bias the nonlinear 
drift response of  structures by an amount that depends on the scaling factor, dynamic 
properties of  the structure and its overstrength. They anticipated that this bias might be 
avoided once the spectral shape is accounted for within the record selection. Indeed, this 
proposal was later confirmed by several studies [Baker 2007; Tsalouchidis and Adam 2022]. 
In contrast to those studies, [Dávalos and Miranda 2019] showed that scaling the ground 
motions can induce bias in the median displacement demands and collapse probability 
estimates, even if  the spectral shape is accounted for via Conditional Mean Spectrum 
(CMS) [Baker 2011]. Du et al. [2019] showed that allowing high levels of  scaling in 
Conditional Spectrum [CS, Jayaram et al. 2011] based record selection can influence the 
statistical distribution of  IMs (e.g. arias intensity and duration) other than spectral 
acceleration and, consequently, some engineering demand parameters (EDPs). On the 
contrary, they observed that limiting the scaling to small factors can cause significant misfit 
to the CS target spectra. Based on these observations, they prescribed limitations on the 
maximum scaling factors of  ground motions utilized in the CS approach, especially for 
structures whose response is sensitive to IMs beyond spectral accelerations. 

The practical issues of  mixing soil and rock ground motions and the necessity of  scaling 
them to match the CS are not the only ones plaguing the development of  fragility curves. 
Even with many ground motions to choose from, running numerous NLRHA can be 
computationally very demanding, especially for complicated structural models. This 
limitation leads to a reduced number of  analyses, impacting the uncertainty associated with 
the estimates of  fragility curves. Bradley [2013] explored this issue by examining the impact 
of  the number of  intensity levels considered in the Multiple-Stripe-Analysis (MSA) 
framework as proposed by Jalayer [2003], on the mean and standard deviation of  fragility 
functions, comparing ‘approximate’ results based on the use of  seismic response analyses 
at only a few IM levels, with the ‘exact’ results, based on the use of  a large number of  IM 
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levels, employing the Generalized Conditional Intensity Measure approach [GCIM, Bradley 
2010] to select GMs. To reduce the computational effort that comes with running many 
analyses, various approaches have been proposed, including static procedures by 
FEMA[FEMA P-58 2012], machine learning techniques [Jeon et al. 2019], and enhanced 
methods like the one by Zhuang et al. [2022] which attempt to minimize the number of  
records while maintaining accuracy. Kiani et al. [2018] investigated the number of  analyses 
needed for code, intensity, and risk-based seismic assessment, concluding that at least 20 
ground motion pairs are required for risk assessment if  a tolerance of  10% error in the 
mean annual rate of  exceeding EDP (as compared with the benchmark case with 100 
records per IM level) is accepted and maximum inter-story drift is adopted as an EDP. 
Baltzopoulos et al. [2019] instead examined the number of  records necessary when Cloud 
[Jalayer 2003] and Incremental Dynamic Analysis (IDA) [Vamvatsikos and Cornell 2002] 
are utilized, concluding that it depends on the seismic hazard curve, with sites exposed to 
higher seismic hazard requiring more ground motions to achieve a similar coefficient of  
variation in the failure rate. The choice of  the number of  ground motions used in structural 
analysis varies among studies and hinges on the methodology adopted for assessing 
structural response and for record selection, on the choices of  the conditioning IM and the 
EDP that describe the damage, and on the site-specific hazard level, among other factors. 

The main motivation of  this study is to answer the following two questions: (1) Given the 
scarcity of  severe ground motions, is amplitude scaling of  weaker signals to match the 
target CS a legitimate operation, or does it create ensembles of  ground motions that could 
potentially cause bias in structural response estimates? and (2) how many analyses per 
intensity level one should run in the CS-based MSA framework for seismic risk assessment, 
without compromising the desired level of  accuracy of  the estimates and at the same time 
minimizing the computational burden? 

In the following sections, we will first describe the methodology behind hazard-consistent 
record selection, explaining how we compiled the database of  ground motions, performed 
hazard analysis for the case study site (Perugia, Central Italy) and subsequently employed 
CS to select records. Following this, we will explore the impact of  ground motion scaling, 
statistically comparing distributions of  different IMs, EDPs and fragility curves. In the 
second part of  the study, we will investigate what is the optimal number of  records for use 
in the CS-based MSA framework.  This analysis involves the consideration of  six distinct 
groups of  records, each characterized by a different number of  ground motions. Our 
investigation extends to assessing the impact of  this choice on three critical aspects: fit to 
the target CS spectrum, the accuracy of  fragility estimates and response hazard curves.  

Within this analytical framework, an ensemble of  hypothetical structures located at a case 
study site in Perugia, Central Italy, is considered. Given a large number of  response analyses 
necessary for robust statistical inferences, we adopt a pragmatic approach: we employed 
single degree of  freedom (SDOF) systems for their analytical simplicity but without 
compromising the generality of  our findings.  
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5.2 HAZARD-CONSISTENT GROUND MOTION RECORD SELECTION 

5.2.1 Assembling ground motion database 

To assemble the database of  ground motions from which we would select records, we use 
flatfiles from different data repositories. More specifically, we use the Engineering Strong-
Motion (ESM) database (https://esm-db.eu) [Lanzano et al. 2019], NGA-West2 (NGA 
West 2 | Pacific Earthquake Engineering Research Center (berkeley.edu)) [Ancheta et al. 
2014], New Zealand Strong-Motion database (Home - GNS Science) (here referred to as 
GNS) [Van Houtte et al. 2017] and finally, the updated version of  worldwide NEar-Source 
Strong-motion (INGV/RELUIS NESS flat-file) (NESS) [Sgobba et al. 2021]. The ground 
motions from the NGA-West2 and NESS databases are retained if  recorded at stations 
outside the geographical area covered by the other two databases to avoid double-counting. 
As spectral acceleration ordinates in these databases were reported at different vibration 
periods, we interpolated them to obtain the same array of  periods that corresponds to the 
one available in the ESM database. A representation of  the structure of  the final database 
can be separated into six different blocks: intensity measures, event metadata, station 
metadata, source metadata, source-to-site distance metrics, and waveform metadata as 
illustrated in Figure 5.1. The assembled database is available for download at NevenaSipcic 
(Nevena) (github.com) as a *.mat data file. In Figure 5.2 one can see the map of  the 
epicenters of  the earthquakes with a moment magnitude Mw>5. In total, a suite of  34107 
three-component ground motions is assembled.  

 
Figure 5.1. Schematic structure of the database that contains all considered ground motions. 

 

Ground 
motion 

DB 

 

Intensity measures: PGA, 
PGV, Sa(T), SaRotD50, CAV, 
D5-75, D5-95 

Station metadata: station 
code, proximity code, Vs30, 

Vs30 type(measured or 
calculated) 

Event metadata: eventID, 
event depth, magnitude, 
magnitude type Mw or ML 

Source metadata: rake, dip 

 

Waveform metadata: low 
pass filter frequency, high 

pass filter frequency 

 

Source to site distance 
metrics: Rjb, Rrup 

 

https://esm-db.eu/
https://peer.berkeley.edu/research/nga-west-2
https://peer.berkeley.edu/research/nga-west-2
https://www.gns.cri.nz/
http://ness.mi.ingv.it/
https://github.com/NevenaSipcic
https://github.com/NevenaSipcic
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Figure 5.2. Map of epicenters of the earthquakes included in the assembled dataset, color-coded based 
on the original databases. 

5.2.2 Hazard analysis  

In both defined studies we use as a case study, a site in Perugia, Italy, located on a rock with 
Vs30=800m/s. Probabilistic Seismic Hazard Analysis (PSHA) is carried out using the 
OpenQuake software [Pagani et al. 2014], the Ground Motion Prediction Equation 
(GMPE) of  Boore and Atkinson [2008], and the SHARE seismic source model [Woessner 
et al. 2015]. In Figure 5.3 we show the location of  the site and the mean hazard curves for 
different IMs, in terms of  the probability of  exceedance (poe) in 50 years. Seismic hazard 
disaggregation is performed for ten intensity levels (IMLs) corresponding to the return 
periods from 42 to 24975 years. Table 5.1 shows the defined IMLs with the corresponding 
poe in  50 years and the return period. In Appendix C1 one can find the mean magnitude 
and distance obtained from the disaggregation for every IML and different IMs.   

Table 5.1. Considered intensity levels (IMLs) and corresponding probabilities of exceedance (poe) in 
50 years and return periods.  

IML 1 2 3 4 5 6 7 8 9 10 

poe in 
50 yrs 

70% 50% 30% 10% 5% 2% 1.5% 1.0% 0.6% 0.2% 

Return 
period 

42 72 140 475 975 2475 3310 4975 8310 24975 
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Figure 5.3. (a) Location of the case study site and (b) mean hazard curves for different IMs in terms 

of the probability of exceedance(poe) in 50 years.  

5.2.3 CS-based record selection 

To select the ground motions we use the CS approach as proposed by [Jayaram et al. 2011].  
With this approach, records are selected to match the target distribution in terms of  
spectral ordinates conditioned on the chosen IM*(e.g. Sa(T1), AvgSa) for the hazard level 
of  interest extracted from the corresponding hazard curve. Results of  the seismic hazard 
disaggregation are then used to identify the scenarios (in terms of  magnitude M, distance 

R and residual ɛ for the chosen IM* level) that contribute the most to to the exceedance 
of  that IM* level at the site. Using mean magnitude (M) and distance (R) obtained from 
the disaggregation, i.e. the so-called ‘‘approximate’’ CS method [Lin et al. 2013], target CS 
mean and standard deviation are found with Equation (5.1) and Equation (5.2), respectively.  

)ln()(|ln*)(ln|ln *)( SaTSaTSaSa T  +=  (5.1) 

2
)(|ln*)(ln|ln *)(1 TTSaTSaSa  −=  (5.2) 

where µln Sa(T)  and σln Sa(T) are the unconditional logarithmic mean spectral accelerations and 

associated standard deviations obtained from the GMPE while ρ(T*) represents the 
correlation coefficient between the residuals of  the IM* and Sa(T) across all periods of  
interest, calculated with Baker and Jayaram [2008] correlation structure.  

We use the orientation-independent measure in terms of  GMRotD50 [Boore 2010] to 
maintain full consistency with the hazard computations. For every record that we want to 
select we generate a random realization by sampling correlated lnSa values from the 
multivariate normal distribution and we select a record from an available database that best 
matches this realization. The simulation procedure is repeated several times and the set of  
records that best matches the target (given by Equations (5.1) and (5.2)) is selected. The 
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accuracy of  the matching to the target is calculated using the use the sum of  squared errors 
(SSEs) [Baker and Lee 2018] metric defined by Equation (5.3). 

])()[( 2
lnln

1

2
lnln

kkkk
IMIM

p

k
IMIMs swmSSE  −+−=

=

 (5.3) 

where IMk is the spectral acceleration at Tk, mlnIMk is the sample mean of  lnIMk, and slnIMk 
is the sample standard deviation of  lnIMk, both estimated from the selected motions. The 
quantities µln IMk and σln IMk are the target conditional means and standard deviations, p is the 
number of  vibration periods of  interest in the target spectrum, and w is a weight factor 
here assumed equal to 2.0. This latter value is meant to assign a higher degree of  
importance to the mismatches in the standard deviation rather than the target mean. In our 
calculations, SSEs=0.12 is considered as the acceptable threshold [Iñarritu et al. 2023]. 
Once the initial set of  records is selected, one can perform the so-called “greedy” 
optimization [Jayaram et al. 2011] to improve the match to the target. One should note that 
the record selection using AvgSa as a conditioning IM is similar to the one when Sa(T*) is 
used, as explained in more detail in Kohrangi et al. [2017].  

For the sake of  the illustration, we show in Figure 5.4 and Figure 5.5 the record selection 
for the case study site and intensity level corresponding to the IML4 (i.e., 475 years return 
period) using Sa(1.0s) and AvgSa(0.2s-2.0s) as a conditioning IM, respectively. In the 
illustrated case, 22 GMs are selected to match the target mean and standard deviation of  
ln(Sa).  

  
Figure 5.4. Illustration of the record selection with the conditioning IM=Sa(1.0s) corresponding to the 

IML4 (i.e., 475 years return period) in Perugia, Italy. (a) Mean (of the log) CS±2 standard 
deviations and spectra of the 22 selected records are shown. (b) Target standard deviation 
and standard deviation of the selected set of 22 records.  
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Figure 5.5. Illustration of the record selection with the conditioning IM=AvgSa(0.2s-2.0s) 

corresponding to the IML4 (i.e., 475 years return period) in Perugia, Italy. (a) Mean (of 
the log) CS±2 standard deviations and spectra of the 22 selected records are shown. (b) 
Target standard deviation and standard deviation of the selected set of 22 records. 

5.3 EFFECT OF ACCELEROGRAMS’ SCALING ON HAZARD-CONSISTENT GROUND 

MOTION RECORD SELECTION  

5.3.1 Case study and analyses set-up 

To represent a wide group of  structures, we use a set of  SDOF systems characterized by 
different fundamental periods (T1 = 0.2, 0.5, 1.0, 1.5, and 2.0s) and with two different 
hysteretic models, namely, the degradation (pinching) model and the elastic-hardening 
model. These models were implemented in OpenSees using the ‘‘pinching4’’ and ‘‘Steel01’’ 
material models, respectively. To design these systems, we used the yield base shear 
coefficient (Cy) representative of  a lateral strength corresponding to the PSHA-based 
spectral acceleration value of  10% in 50 years at the fundamental period of  each SDOF. 
Cy represents the yield base shear Fy normalized by the weight W and is numerically 
equivalent to the yield spectral acceleration Say in units of  g. Namely, Say/g=Vy/W is 
obtained as Sades(T1)∙Ω/(q∙g), where Sades(T1) is the design spectral acceleration at T1, q is 
the behavior factor assumed equal to 4.0 for new ductile buildings and Ω=2.0 is the 
overstrength factor. Accordingly, the corresponding yield displacement, δy of  the SDOF is 
obtained by δy = Say∙[T1/(2π)]. The responses of  the SDOFs were computed assuming a 
5% mass proportional Rayleigh damping. 

From the compiled database of  ground motions, two groups of  records were extracted, 
differentiated by the scaling factors used to match the target CS spectra. In the low-scaling 
factor (LSF) group, we only allowed scale factors in the range of  [1, 2] while in the high-
scaling factor (HSF) group, much larger scale factors in the range of  [7, 10] were adopted. 
For each considered SDOF system and 10 IMLs defined (Table 5.1), 40 ground motion 
pairs were selected using Sa(T1) as the conditioning IM, employing the methodology 
described in Section 5.2, from both the LSF and HSF groups. Figure 5.6 shows the 
goodness of  fit achieved between empirical and target CS in terms of  SSEs for the LSF 



Seismic Risk Assessment for RC Buildings Including Earthquake Sequences 

 

97 

and HSF groups across all conditioning periods. Notably, all cases exhibit a satisfactory fit, 
with none surpassing the threshold SSEs value of  0.12 [Iñarritu et al. 2023]. One should 
note that SSEs values obtained from the HSF group are slightly higher despite using higher 
scaling factors, a result that may appear counterintuitive. Nonetheless, it is worth 
highlighting that the HSF group includes only motions with a minimum scaling value of  7 
(in contrast to the LSF group’s minimum of  1), hence this is an expected trend.  

Figure 5.7 shows the hazard consistency verification that compares the values in the PSHA 
hazard curves for Sa(0.2), Sa(1.0), and Sa(2.0) with the mean annual rates of  exceeding the 
same values extracted from the CS-selected sets of  records with IM*= Sa(1.0). One can 
see that the match is good for both LSF and HSF group.   

 
Figure 5.6. SSEs for the CS-based (a) LSF and (b) HSF record sets selected for different conditioning 

periods. The horizontal gray dashed line shows the acceptable SSEs threshold of 0.12. 

 

  
Figure 5.7. Hazard consistency verification for spectral ordinates of Sa(0.2), Sa(1.0), and Sa(2.0) using 

the IM*= Sa(1.0) for records selected from (a) the LSF group, and (b) the HSF group. The 
dashed lines show the PSHA-based hazard curves while the solid lines show the values of 
the mean annual frequency of each spectral ordinate as estimated from CS-based selected 
records. 
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Using the selected sets of  GMs we run the NLRHA analysis for all IMLs (i.e. MSA) 
monitoring four EDPs relevant to risk assessment: a) maximum ductility, computed using 
the yield displacement of  each SDOF; b) maximum acceleration, computed as the 
maximum absolute value found during the analysis; c) maximum velocity, computed as 
before; and d) dissipated hysteretic energy, computed by integrating the force–displacement 
response. The cases where the ductility exceeds eight are treated as collapse cases. Fragility 
functions for the SDOFs are derived for three arbitrarily defined ductility-based damage 
states (DS): Onset of  Damage (DS1) when 2<µ≤4, Moderate Damage (DS2) when 4< µ 
≤8, and near collapse (DS3) defined by ductility values µ>8. To derive fragility functions 
we assume a lognormal distribution and we use the maximum likelihood method [Baker 
2015].  

Our extreme choices for CS-based record selection, in the use of  small versus large scaling 
factors, will reveal the level of  importance of  these choices in hazard-consistent structural 
response prediction. We acknowledge that the ‘‘true’’ response to hazard-consistent, 
unscaled rock ground motions is indeed unknown. However, if  we do not see significant 
statistical differences in the response estimates resulting from our purposely extreme 
choices, then we can reasonably claim that there are no additional biases introduced by 
these practical circumventions in hazard-consistent record selection. 

5.3.2 Statistical analyses of  the IMs 

To assess whether our choices for the SF in CS selection introduce any potential systematic 
discrepancies in structural responses, we first compare the empirical distribution of  several 
IMs extracted from the selected sets of  records. The IMs considered are peak ground 
acceleration (PGA), significant duration (Ds5-75), cumulative absolute velocity (CAV), Arias 
intensity (AI), and acceleration spectral intensity (SI) [Thun et al. 1988]. Figure 5.8 
compares the metrics of  the distributions of  the IMs using box plots, for the three 
conditioning periods of  0.2, 1.0, and 2.0 s. In these figures, the boundaries of  each box 
correspond to the lower and upper quartiles, the line within the box corresponds to the 
median and the whiskers extend to the minimum and maximum observed values. Results 
for the remaining intermediate cases (0.5s and 1.5s) are provided in Appendix C2. 

We see almost no differences in terms of  PGA and SI, while some systematic discrepancies 
are present in terms of  Ds5-75, CAV, and AI. Using the t-test for hypothesis testing, we 
indeed observed that the null hypothesis could not be rejected at the 5% significance level 
for PGA and SI, whereas for Ds5-75, CAV, and AI the null hypothesis is rejected in almost 
all cases. Note that Ds5-75 is not directly affected by scaling, but as using high scaling factors 
naturally implies selecting suites of  ground motions recorded, on average, at larger 
distances from the site, this systematic difference leads to selecting ground motions in the 
HSF group with, on average, longer durations. On the contrary, we can notice statistically 
significant discrepancies in the distribution of  AI and CAV for the HSF and LSF groups, 
with the metrics for the HSF group being almost always higher. Therefore, this exercise 
clarifies that the distributions of  the IMs that are not directly controlled by the selection 
algorithm can be distorted by the amount of  scaling. Therefore, if  such IMs are pertinent 
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to the response of  a structure their hazard consistency must be enforced using approaches 
like the GCIM, to mitigate potential bias. 

   
Figure 5.8. Metrics of the distributions of the different IMs: PGA, Ds5-75, CAV, AI, and SI from the first 

to the last row, respectively. Results for the sets of records selected using the IM*=(a) 
Sa(0.2s), (b) Sa(1.0s)and (c) Sa(2.0s) are shown.  

5.3.3 Structural response estimates and fragility analyses 

In Figure 5.9 and Figure 5.10, we compare the ductility ratio and maximum acceleration 
obtained via MSA for the three SDOFs with the vibration periods of  0.2, 1.0, and 2.0 s 
and pinching and elastic with hardening hysteretic models, respectively. In Figure 5.11 and 
Figure 5.12, we show the corresponding fragility curves for the three defined damage states. 
Despite the differences in the IMs observed earlier, the ductility ratio and maximum 
acceleration responses caused by the ground motions in the two groups are similar both in 
terms of  median and percentiles for all IMLs and SDOFs. However, the slight differences 
in the distribution tails yield some minor differences in the fragility curves. For the SDOF 
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systems with pinching, with the only exception of  the T1=2.0s SDOF at DS3, the HSF 
group yields slightly higher, but statistically not significantly different, exceedance 
probabilities for all SDOFs and ductility levels. However, in the case of  SDOF system with 
the elastic with hardening material model, in some cases LSF yields higher and in others 
lower probabilities. Nonetheless, these differences, again, are not significant. The remaining 
cases (i.e. SDOFs with 0.5s and 1.5s and structural response in terms of  the maximum 
velocity and dissipated energy), which show similar trends, are omitted here but can be 
found in Appendix C3. 

 
Figure 5.9. Comparison of the response estimates obtained from MSA showing the data points, the 

median (solid line) and 5th and 95th percentiles (dashed lines) of the data in terms of 
ductility ratio (a, b, c), and maximum relative acceleration (d, e, f) based on the LSF and 
HSF sets of ground motions. Results for the SDOF with T1 of 0.2s(a and d), 1.0s(b and e), 
and 2.0s(c and f) are illustrated. These results pertain to SDOFs with pinching material 

model. 



Seismic Risk Assessment for RC Buildings Including Earthquake Sequences 

 

101 

 
Figure 5.10. Comparison of the response estimates obtained from MSA showing the data points, the 

median (solid line) and 5th and 95th percentiles (dashed lines) of the data in terms of 
ductility ratio (a, b, c), and maximum relative acceleration (d, e, f) based on the LSF and 
HSF sets of ground motions. Results for the SDOF with T1 of 0.2s(a and d), 1.0s(b and e), 
and 2.0s(c and f) are illustrated. These results pertain to SDOFs with elastic with 

hardening material model. 

   
Figure 5.11. Comparison between the fragility curves obtained from LSF (solid line) and HSF (dashed 

line) groups for three different damage states and SDOFs with vibration period of (a) T1=0.2 s, 

(b) T1=1.0 s, and (c) T1=2.0 s. These results pertain to SDOFs with pinching material model. 
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Figure 5.12. Comparison between the fragility curves obtained from LSF (solid line) and HSF (dashed 

line) groups for three different damage states and SDOFs with vibration period of (a) T1=0.2 s, 
(b) T1=1.0 s, and (c) T1=2.0 s. These results pertain to SDOFs with elastic with hardening 

material model. 
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5.4 OPTIMIZING THE NUMBER OF GROUND MOTIONS PER INTENSITY LEVEL 

5.4.1 Case study and analyses set-up 

In the second part of  this study, we focus on the estimation of  the optimal number of  
records per IM level (or stripe) needed in MSA to achieve an acceptable level of  accuracy. 
To do so, we use as a case study a nonlinear SDOF system with a fundamental period of  
T1=1.0s, designed for the lateral strength corresponding to the PSHA-based spectral 
acceleration value of  10% in 50 years (see Section 5.3.1 for more details). Our chosen 
SDOF system is modeled in OpenSees using a zero-length element and the constitutive 
model proposed by Ibarra et al. [2005], which incorporates both in-cycle and cyclic strength 
and stiffness degradation. Three ductility-based damage states (DS) are arbitrarily defined 
as: Onset of  Damage (DS1) when 2<µ≤3, Moderate Damage (DS2) when 3<µ≤6, and 
near collapse (DS3) defined by ductility values µ>6. In Figure 5.13 we show the monotonic 
backbone curve of  the model with defined damage states indicated.  

As in the previous section, our SDOF system is located in Perugia, Central Italy. Following 
the methodology outlined in Section 5.2, we select the ground motions using CS for the 
ten IMLs defined (Table 5.1) and using two conditioning IMs, namely Sa(1.0s) and 
AvgSa(0.2s-2.0s), with an increment of  0.2s. We define six distinct groups with varying 
numbers of  selected GMs: 3, 7, 11, 16, 22, and 44. To measure the statistical variability of  
the estimates, we repeat the selection 20 times for each group, every time disregarding part 
of  the selected ground motions (to avoid having the same sets of  records): for the case of  
N3 (i.e., 3 records per stripe), one record is omitted in each iteration; for N7, three records; 
for N11, 4 records; for N16, 5 records; for N22, 7 records; and for N44, 11 records.  

 

Figure 5.13. The monotonic backbone of the Ibarra et al. [2005] constitutive material model with the 
three defined damage states indicated, i.e., DS1(onset of damage), DS2(moderate 

damage) and DS3(near collapse).  

5.4.2 Fitting the target CS 

For each group Nx (where x refers to the number of  records in a set), Figure 5.14 and 
Figure 5.15 show the SSEs error metric, given with Equation (5.3), used to measure the 
misfit of  the distribution of  spectral quantities from the selected set to the target CS one, 
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for the Sa(1.0s) and AvgSa(0.2s-2.0s) case, respectively. The points in each stripe refer to 
the 20 iterations conducted. For both conditioning IMs, group N3 exceeds the acceptable 
threshold for all intensity levels, while group N7 fluctuates around the threshold. The last 
four groups have acceptable fits for the first 9 IMLs. For the last IML, group N44 is close 
to or above the threshold in a few iterations simply because of  the lack of  records left in 
the database with the increasing number of  iterations. While we acknowledge that achieving 
a good fit to the target CS depends on various factors, such as the choice of  conditioning 
IM, the hazard at the site, the intensity level of  interest, and the availability of  records for 
selection, based on our findings we can say that when there are too few records in the stripe 
(seven or fewer), matching the target mean and standard deviation of  the CS within an 
acceptable tolerance can be a challenging task. 

   

Figure 5.14. The error (SSEs) estimate for three different intensity levels: (a) IML1, (b) IML5 and (c) 
IML10, for six groups with different numbers of records per stripe (N3–N44) showing 
the improving fidelity achieved by larger record sets. The dashed grey line serves as the 
threshold below which the fit to the target CS can be considered accurate. Record sets 

are selected using Sa(1.0s) as conditioning IM. 

   

Figure 5.15. The error (SSEs) estimate for three different intensity levels: (a) IML1, (b) IML5 and (c) 
IML10, for six groups with different numbers of records per stripe (N3–N44) showing 
the improving fidelity achieved by larger record sets. The dashed grey line serves as the 
threshold below which the fit to the target CS can be considered accurate. Record sets 

are selected using AvgSa(0.2s-2.0) as conditioning IM. 
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5.4.3 Fragility and response hazard curves 

To derive the fragility curves, we run the NLRHA for each of  the 10 IMLs and each of  the 
six Nx groups using the 20 alternative sets of  records. For instance, in the case of  the N3 
group, we performed 600 runs by running three ground motions for 10 IMLs 20 times (as 
we have 20 iterations). Figure 5.16 and Figure 5.17 show the results for three groups: N3, 
N16, and N44, for Sa(1.0s) and AvgSa(0.2s-2.0s) cases, respectively. As expected, the 
variability in the fragility curves decreases, and the results become more stable as we utilize 
a larger number of  records. This trend is not as apparent for the lower ductility levels as it 
is for the DS3 (near collapse). More specifically, Figure 5.18 and Figure 5.19 display the 
distribution of  the median and dispersion of  the fragility functions for each group 
considered. To estimate the variability associated with the fragility function parameters, we 
calculate the coefficient of  variation (COV) for both median and dispersion, as illustrated 
in Figure 5.20 and Figure 5.21, for Sa(1.0s) and AvgSa(0.2s-2.0s) case, respectively. Notably, 
the median estimates are more stable, consistently remaining below 10% for all damage 
states when there are seven or more records in the stripe. On the other hand, for all damage 
states the dispersion estimate has a higher COV, but lower than 20%, when there are 16 or 
more records per stripe.  
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Figure 5.16. Fragility curves obtained with 20 alternative ground motion sets for three damage states 

DS1, DS2, and DS3 corresponding to the ductilities of 2, 3, and 6, respectively. Results for 
groups N3, N16 and N44 are illustrated. Record sets are selected using Sa(1.0s) as 
conditioning IM. 
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Figure 5.17. Fragility curves obtained with 20 alternative ground motion sets for three damage states 

DS1, DS2, and DS3 corresponding to the ductilities of 2, 3, and 6, respectively. Results for 
groups N3, N16 and N44 are illustrated. Record sets as selected using AvgSa(0.2s-2.0) as 
conditioning IM. 
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Figure 5.18. Estimates of the fragility function parameters. Scatter points refer to 20 alternative record 

sets while solid lines connect the median values per DS. Record sets are selected using 
Sa(1.0s) as conditioning IM. 

  
Figure 5.19. Estimates of the fragility function parameters. Scatter points refer to 20 alternative record 

sets while solid lines connect the median values per DS. Record sets are selected using 

AvgSa(0.2s-2.0) as conditioning IM. 

  
Figure 5.20. COV of the fragility curve parameter estimates. A number of 11–16 records seems to offer 

a stable low COV for both median and dispersion across all DSs. Record sets are selected 
using Sa(1.0s) as conditioning IM.  
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Figure 5.21. COV of the fragility curve parameter estimates. A number of 11–16 records seems to offer 

a stable low COV for both median and dispersion across all DSs. Record sets are selected 
using AvgSa(0.2s-2.0) as conditioning IM. 

Lastly, we use the obtained results to derive the seismic demand hazard curves, which 
represent the rate of  exceeding a specific edp level (in this case ductility) in a given period 
of  time (e.g., one year). To calculate the seismic demand curves we combine the results of  
the hazard analysis with the results of  the structural analysis using numerical integration 
over a range of  intensity levels and the following expression: 
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λEDP(edp) is the annual rate of  exceeding the edp level, P(EDP>edp|IM) is the probability of  
exceeding a certain edp level for the given intensity level IM=im and ΔIM is the increment 
in IM between the considered IM levels while the ΔλIM(im) is the increment in the seismic 
hazard curve for the associated im. The term associated with the hazard part is found as 
the first derivative of  the hazard curve (which is interpolated using cubic spline 
interpolation in log space). To find the probability of  exceeding the edp level for a given 
intensity level we follow the methodology of  Shome and Cornell [1999], who separate 
collapse and non-collapse cases, as given in Equation (5.5). 
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PC|IM is the probability of  collapse, found using the maximum likelihood method Baker 
[2015]. As performed commonly, the distribution of  non-collapse cases is found assuming 
the lognormal distribution characterized with a mean µlnEDP|IM  and dispersion σlnEDP|IM. To 
find the mean and dispersion we use the method of  moments (see Equations (5.6) and 
(5.7)). As the structural analyses are performed only at the specific IM levels to find mean 
and dispersion at other intensity levels we use the piecewise linear interpolation. 
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In Figure 5.22, we show the response hazard curves cast in terms of  ductility ratio for 
different sets of  records. Similarly as in the case of  fragility functions, the variability reduces 
as we increase the number of  records used. As illustrated in Figure 5.23 the COV of  the 
estimated exceedance rates increases, as expected, for the higher ductilities and decreases 
as we utilize more records. For the first two damage states the COV is below 15% if  we 
use at least 11 records per stripe while for the last damage states at least 22 records are 
needed to achieve the same accuracy.  

   

   
Figure 5.22. Ductility hazard curves obtained with 20 alternative ground motion sets from groups with 

different numbers of GMs (N3 in (a) and (d), N16 in (b) and (e) and N44 in (c) and (f)). 
Record sets are selected using Sa(0.1s)((a), (b) and (c)) and AvgSa(0.2s-2.0)((d), (e) and 
(f)) as conditioning IM. 
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Figure 5.23. COV of estimated exceedance rates at different ductility levels and for different record 

sets using (a) Sa(1.0s) and (b) AvgSa(0.2s-2.0s) as a conditioning IM. 

5.5 CONCLUSIONS 

Hazard-consistent record selection is of  paramount importance for adequate site-specific 
risk assessment of  structures. In many high-profile applications, the hazard is computed 
via PSHA for reference rock conditions, while the effects of  soil on surface motions are 
studied using soil dynamics. In these cases, to ensure hazard consistency, record selection 
would ideally require a large pool of  rock, unscaled, real ground motions to ensure hazard 
consistency. However, the number of  available rock ground motions is not sufficient to 
achieve this goal and alternative practical workarounds, such as mixing soil with rock real 
ground motions, scaling real ground motions to bring them up to the desired (high) 
amplitudes, or considering synthetic ground motions (or combinations of  them), are often 
utilized. In the first part of  this study, we investigated the possible bias in structural 
response arising from using scaled real ground motions for CS-based record selection. For 
this purpose, we considered a site in Central Italy as a case study for hazard computation; 
we carried out CS-based record selection for that site and with the ground motions we 
computed the responses of  five SDOF systems (with fundamental periods ranging from 
0.2 to 2.0 s), with 2 material models (pinching and elastic with hardening). The sets of  CS-
based records selected to match the target spectra included were separated into the two 
groups: ground motions scaled by high scaling factors (HSF) in the range of  [7, 10] and 
low scaling factors (LSF) in the range of  [1, 2]. For the different record sets, we compared 
the distributions of  several intensity measures beyond spectral quantities, which are already 
forced to be similar by the CS-based selection approach, to identify any systematic 
differences in IMs that could potentially lead to different structural responses. Although 
we noticed some discrepancies in the distribution of  some IMs among different groups 
exacerbated by our extreme choices in record selection, we did not observe significant 
statistical discrepancies between the predicted responses of  the considered SDOF systems. 
Our results show that as long hazard consistency is carefully enforced via a CS method, 
and provided that none of  the IMs relevant to the structural response of  the specific 
structure show any systematic differences, the use of  scaled motions can be considered 
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adequate to use for response assessment of  structures located in active crustal seismicity 
regions and with a fundamental period in the 0.2–2.0 s range. If  some of  the IMs that can 
affect the response do show some systematic difference, then the use of  GCIM for record 
selection is recommended instead. We would like to emphasize again that, by design, we 
tested only extreme cases, the response of  structures to CS-based selected groups of  very 
different ground motions, namely, only unscaled (or mildly scaled) records versus severely 
scaled records. In real applications, we see no compelling reasons to consider such extreme 
cases because one would rather consider using highly scaled records sparingly and only on 
an as-needed basis to augment the pool of  unscaled records. Therefore, it is legitimate to 
say that in real applications one would expect to see an even smaller amount of  bias, if  any, 
than that found in some cases here. 

To obtain robust fragility (and hence response hazard curve) estimates one often has to run 
many analyses, an exercise that can come with high computational cost. That said, the 
objective in the second part of  this study was to investigate how one could reduce the 
number of  response analyses needed to derive site-specific fragility curves for structures 
using the MSA approach. To do so, we first examined the effect of  the number of  ground 
motions per stripe on the match of  the distribution of  spectral accelerations of  the selected 
ground motions with that of  the target conditional spectrum and, in turn, the effect on the 
resulting fragility curve. We showed that to achieve a good match to the target more than 
7 records per stripe are recommended and, more importantly, to obtain stable median and 
dispersion estimates of  the fragility curve at least 11 or 16 ground motions are needed, 
given the desired level of  accuracy sought here.  

The findings of  this section can facilitate the practical application of  CS-based record 
selection for fragility curve computation and, ultimately, for site- and structure-specific risk 
assessment. 
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6.AFTERSHOCK GROUND MOTION RECORD 
SELECTION AND DAMAGE-DEPENDENT FRAGILITY 
CURVES 

6.1 INTRODUCTION 

In the current framework of  performance-based earthquake engineering (PBEE), as 
established by Cornell and Krawinkler [2000], the assessment of  the probability that 
ground motion will exceed various intensity levels at a specific site over a given period of  
time relies on classical Probabilistic Seismic Hazard Analysis (PSHA). In PSHA, all 
dependent seismic events, such as aftershocks, foreshocks, and triggered events, are 
systematically disregarded. In other words, earthquake catalogs that are used to predict the 
rates of  future events have been “declustered” to include only the supposedly independent 
mainshock events. Additionally, it is assumed that the building is returned to an intact state 
immediately after the earthquake event, assuming that repairs have been fully completed 
since the occurrence of  the previous seismic event – though, in reality, this assumption 
most often does not hold. 

Historical seismic sequences, such as those in Canterbury, New Zealand in 2010 [EEFIT 
2011], Japan in 2011 [Kazama and Noda 2012], and Central Italy in 2016 [Sextos et al. 2018]  
have demonstrated that these traditional approaches tend to be conservative in estimating 
the risk to society. These sequences illustrated that the impact of  seismic events can be 
significantly amplified when considering the entire sequence, compared to when focusing 
solely on the mainshock. This amplification is particularly notable in the aftermath of  major 
events, which are frequently followed by a cluster of  damaging aftershocks. As this issue 
has been long recognized, several researchers have been studying how to incorporate 
clustered seismicity into risk assessment both in terms of  hazard and vulnerability. The 
underestimation of  hazard due to the mainshock-only view has been addressed in several 
previous studies where different models have been proposed [e.g., Iervolino et al. 2014; 
Papadopoulos et al. 2020; Yeo and Cornell 2009]. Conversely, to quantify the potential 
underestimation of  structural vulnerability, researchers have introduced the concept of  
fragility functions conditioned on the damage experienced after the mainshock. These are 
commonly referred to as state- or damage-dependent fragility curves [Bazzurro et al. 2004; 
Luco et al. 2004]. Due to the lack of  empirical data, these curves are often derived 
analytically, via nonlinear response history analysis (NLRHA) where the structure of  
interest is subject to both the mainshock (MS) and aftershock (AS) ground motions in a 
back-to-back fashion.  
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Due to the scarcity of  MS-AS ground motions recorded at the same station, particularly in 
the high-intensity range, several authors used MS ground motions to represent both the 
MS and AS shaking effects [e.g., Amadio et al. 2003; Raghunandan et al. 2015]. To make 
these scenarios more realistic, either the mainshock ground motions were randomly paired 
with aftershock ground motions or the aftershock ground motion was taken as identical to 
the mainshock ground motion but scaled down [Aljawhari et al. 2020; Ryu et al., 2011]. On 
the other hand,  Jeon et al. [2015] and Jalayer and Ebrahimian [2016] employed distinct 
pools of  ground motions for mainshocks and aftershocks before randomly combining 
them. Several studies, such as those conducted by Ruiz-García and Negrete-Manriquez, 
[2011] and Li et al. [2014], have emphasized the significance of  using real ground motion 
sequences. They argued that artificially paired seismic sequences, whether by repeating the 
mainshock ground motion or by forming random mainshock-aftershock pairs, can lead to 
biased results, such as overestimation of  demand and reduced variability. These findings 
underscore the importance of  maintaining the correlation between mainshock and 
aftershock ground motions for more accurate analyses.  

To derive damage-dependent fragilities all of  these studies used approaches such as Cloud 
Analysis [Bazzurro et al. 1998; Jalayer 2003; Shome et al. 1998], incremental dynamic 
analysis [IDA, Vamvatsikos and Cornell 2002] and its extension Back-to-back (B2B) IDA, 
introduced by Luco et al. [2004], or a combination of  these. While these methods have 
proven valuable in certain applications, recent research has shed light on the importance 
of  hazard consistency when developing fragility functions within the mainshock-only 
framework. As a result, several studies have addressed this concern by proposing various 
site-specific record selection methods [e.g., Baker 2011; Bradley 2010; Jayaram et al. 2011; 
Spillatura et al. 2021]. Nonetheless, there is comparatively less research on this topic when 
it comes to hazard consistency in the context of  seismic sequences. Given the correlation 
between the causal parameters of  the mainshock and aftershock, as well as the similarities 
observed in the spectral characteristics of  their ground motions at the same station, it is 
reasonable to assume that site dependency also plays a relevant role in the context of  
clustered seismicity. The limited amount of  research in this field can be attributed to the 
relatively recent surge in interest surrounding clustered seismic risk assessment and the 
inherent complexity of  the topic, which demands substantial computational efforts. To the 
best of  the authors' knowledge, only a handful of  studies have explored this area, including 
the works of  Zhu et al. [2017], Ghotbi and Taciroglu [2020] and Papadopoulos et al. [2020]. 
Ghotbi and Taciroglu [2020] proposed a new framework for aftershock probabilistic 
seismic hazard analysis (APSHA) and computed aftershock hazard curves for the given 
mainshock scenario. They used information from hazard disaggregation for a site in 
California to select hazard-consistent aftershock ground motion records using the 
generalized intensity measure (GCIM) approach [Bradley 2010]. Zhu et al. [2017] developed 
a method for generating aftershock Conditional Mean Spectrum [CMS; Baker 2011] using 
a copula technique, NGA-West2 [Ancheta et al. 2014] ground motion database and 
Abrahamson et al. [2014] ground motion prediction equation (GMPE) to model the 
correlation between the MS and AS spectral ordinates. However, they only provide the 
correlation coefficients at the same period (TAS=TMS). In contrast, Papadopoulos et al. 
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[2019] empirically derived correlation coefficients by investigating the correlation of  MS-
AS spectral accelerations at different vibration periods and proposed a pragmatic procedure 
that can be applied to the selection of  MS-AS ground motion pairs using consistent causal 
parameters and accounting for the correlation between their spectral accelerations.  

The selection of  the conditioning intensity measure (IM) and its significance in record 
selection has been the subject of  multiple investigations in the context of  mainshock-only 
seismicity [e.g., Bakalis et al. 2018; Bradley 2012; Kohrangi et al. 2016; O’Reilly 2021]. 
However, in the realm of  ground motion sequence selection, comprehensive studies on 
this aspect are limited. Typically, the employed intensity measures include peak ground 
acceleration (PGA) [e.g., Di Trapani and Malavisi 2019], spectral acceleration at the 
fundamental period of  the structure (Sa(T1)) [e.g., Jalayer and Ebrahimian 2016; 
Tesfamariam and Goda 2017] or, more rarely, inelastic spectral displacement (Sdi)[e.g., 
Raghunandan et al. 2015]. Jeon et al. [2015] used structure-independent intensity measures, 
namely peak ground acceleration, velocity and displacement (PGA, PGV, PGD), Arias 
Intensity (AI), Cumulative Absolute Velocity (CAV) and Sa(1.0s) for the aftershock fragility 
assessment of  an old RC frame building in California and showed that the PGV was the 
optimal IM, among those considered. In a recent study, Orlacchio et al. [2021] computed 
state-dependent fragility functions for the Italian reinforced concrete residential structure 
classes. They employed four conditioning IMs: Sa(0.3s), spectral acceleration at the period 
of  the undamaged system Sa(Tel), average spectral acceleration AvgSa and INP [Bojórquez 
and Iervolino 2011]. They showed that AvgSa and INP are more efficient intensity measures 
compared to the remaining two. The advantages of  using AvgSa for the derivation of  
damage-dependent fragility curves, such as its ability to indirectly account for the higher-
mode effects and period elongation, have been also acknowledged in the studies of  
Aljawhari et al. [2020] and Pedone et al. [2023].  

Some of  the mentioned techniques for MS-AS ground record selection are simple but 
crude, while others are superior but significantly more complex. Given that it is still unclear 
what is the optimal method to derive damage-dependent fragility curves, while balancing 
accuracy and computational effort, our study investigates three different approaches of  
varying complexity. These approaches are evaluated using a simple case study, and their 
relative advantages and disadvantages are discussed. To compare these methods we 
compute and contrast the estimates of  the annual probability of  exceeding different 
damage states from the different approaches. The probabilities that serve as the benchmark 
are those that we compute following the so-called “direct analysis”. In the following 
sections, we describe the set-up of  the analysis, including the description of  the case study, 
the definition of  the damage states, seismic hazard analysis, and the event-based 
methodology used for computing annual probabilities of  exceeding defined damage states. 
Each approach is applied to the case study. Finally, we discuss the results and provide some 
practical recommendations based on the outcomes of  our investigation. 
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6.2 ANALYSIS SET-UP 

6.2.1 Case study and definition of  the damage states 

As a case study site, we have selected a rock site in Perugia, Central Italy, located at 43.11°N 
and 12.39°E with Vs30=800 m/s, as shown in Figure 6.1a. The structural system under 
consideration is a nonlinear single-degree-of-freedom system (SDOF) with a fundamental 
period of  T1=0.2s. This SDOF system is described using the constitutive model defined 
by Ibarra et al. [2005], which incorporates both in-cycle and cyclic degradation, directly 
modeled as a function of  the dissipated energy. It has been widely used in earthquake 
engineering as it demonstrated to be in good agreement with experimental results. The 
SDOF is designed to have the spectral acceleration at yield (Say) equal to 0.1875g and 
accordingly, the corresponding yield displacement δy=Say(T1/2π). The ductility of  the 
system (µ=δc/δy)  is set to 4, categorizing it as a system of  medium ductility. The spectral 
acceleration at the capping point Sac is determined as 1.1 times Say, and the softening 
branch is defined by assuming that the ratio between the post-capping stiffness (Kc) and the 
initial stiffness (Ke) is -0.30.  The monotonic backbone of  the system, defined in this 
manner, is depicted in Figure 6.1b. Regarding the parameters describing the cyclic response, 
we employ a consistent cyclic deterioration parameter λ=25 for all modes of  deterioration 
(strength, post-capping strength, unloading stiffness, and reloading stiffness), representing 
rapid cyclic degradation, while the rate of  degradation is set to 1.0.  

 

 

Figure 6.1. (a) Location of the case study site and (b) the monotonic backbone of the considered 

SDOF, with the characteristic points indicated 

To define the damage states, we use two engineering demand parameters (EDPs). First, we 
use a conventional, displacement-based EDP, defined in this particular case through 
maximum ductility ratio. While displacement-based EDPs are often utilized due to their 
simplicity and practicality, recent studies underscored their limitations in the realm of  
predicting damage during seismic sequences due to their non-cumulative nature [e.g., 
Baraschino et al. 2023; Iñarritu et al. 2021; Pedone et al. 2023; Wen et al. 2017]. These 
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studies indicated that cumulative, energy-based EDPs might be a preferable choice. 
Therefore, in addition to the maximum ductility, we use the damage index (simply referred 
to as DI in the following text) that is defined in Section 4.4 of  this thesis. In Table 6.1. we 
define the damage states using both considered EDPs, based on the findings described in 
Section 4.8. Keep in mind that these damage states correspond to the flexure-dominated 
columns, given that the SDOF considered here is expected to fail in this mode. DS0, not 
reported in the table, refers to the intact conditions while DS4 is considered as collapse. If  
at the end of  an earthquake the structure, initially in the intact condition DS0, experiences 
a ductility µ of, say, 3.0, then the final damage state will be DS2. As discussed later, this 
damage state will be the initial one should another event strike the structure.  

We recognize that the choice of  a simple SDOF system has its limitations, but it was a 
pragmatic decision to facilitate fast analysis, considering the need to perform thousands of  
analyses for specific approaches, as elaborated upon later in this study. 

Table 6.1. Damage states defined in terms of the maximum ductility and DI 

 
Maximum 
ductility 

DI Description of damage 

DS1 1.5-2.0 0-0.20 
Flexural and longitudinal cracking, yielding of steel bars in 

tension, followed by shear cracking 

DS2 2.0-3.5 0.2-0.4 
The onset of concrete spalling exposing the transverse 

reinforcement 

DS3 3.5-6.0 0.4-0.75 
More significant spalling of concrete, longitudinal steel 

is exposed, the potential start of tie yielding 

DS4 >6 >0.75 
Major safety implications, bar buckling, concrete core 

crushing, fracture of the bars, complete failure 

 

6.2.2 Seismic Hazard Analysis 

To perform the probabilistic seismic hazard analysis, we adopt the event-based 
methodology and we consider two cases: (i) clustered seismicity case where we use the 
ETAS model, as proposed by Papadopoulos et al. [2020], to simulate seismic sequences 
and (ii) mainshock-only case where the Poisson model is used. 

The ETAS model is one of  the space–time point Hawkes processes formulated as the 
combination of  background seismicity μ(x, y) and triggered seismicity characterized by the 
function g, treating all events uniformly without distinguishing between foreshocks, 
mainshocks, and aftershocks. Every background (or parent) event can trigger offspring 
events capable of  producing offspring of  their own. The overall rate of  events with 
magnitude m at a specific time and location, given the history of  prior earthquakes, Ht, can 
be characterized by the general form given with the following equation [Seif  et al. 2017; 
Zhuang et al. 2004]: 
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The index j refers to all past earthquakes. The triggering function has the following form 
[Ogata 1998]:  

),;()()(),,,( jjjjjjjjj myyxxfttvmkmyyxxttg −−−=−−−  (6.2) 

where the productivity term k(mj)=Aeα(mj-mc)  represents the mean number of  events directly 
triggered by an earthquake of  a magnitude mj, the minimum magnitude considered is mc. 
Parameter A quantifies the overall triggering capability, independent of  earthquake 
magnitude, while α governs the role of  magnitude. The temporal decay of  triggered 
earthquakes, v(t-tj)=(p-1) cp-1(t-tj+c)-p, is modeled by the Modified Omori law [Omori 1894; 
Utsu 1961], while the spatial distribution function used in this study is the one proposed 
by Zhuang et al. [2004].  

To employ the ETAS model effectively, it is essential to calibrate it based on available 
seismic data for the region of  interest and estimate the sets of  unknown parameters: 

},,,,,,,{  qdpcAv=  (6.3) 

In this study, we utilize parameter values provided by Šipčić et al. [2022] (i.e. Section 2), 
which have been calibrated for the Central Italy region, where Perugia, our case study site, 
is located, and the HORUS [Lolli et al. 2020] instrumental earthquake catalog.  

When it comes to the Poissonian model we use the b-value of  0.93 to describe the 
magnitude-frequency distribution which is assumed to follow the Gutenberg-Richter law, 
and smoothed seismicity approach proposed by Frankel [1995], with the correlation 
distance of  20km. These parameters are estimated based on the HORUS instrumental 
catalogue for the region in Central Italy, declustered with the Gardner and Knopoff  [1974] 
method, as described in Šipčić et al. [2022].  

To calculate hazard curves, we employ the calibrated models (ETAS in the clustered 
seismicity case and Poisson in the mainshock-only case) and conduct Monte Carlo 
simulations, generating 100,000 stochastic earthquake catalogs, each one spanning one year. 
The ETAS model is conditioned on seismicity before the start of  the investigation period, 
which, in this case, is the year between 26/04/2017 and 26/04/2018, following a period 
of  heightened seismic activity in Central Italy. Naturally, as the Poisson model is time-
independent, there is no conditioning period in this case. For each simulated earthquake 
event, we sample rupture properties (rake, dip, slip, and seismogenic depth) based on 
SHARE seismic source model [Woessner et al. 2015] following the procedures 
implemented in the OpenQuake software [Pagani et al. 2014]. Subsequently, we utilize the 
GMPE of  Abrahamson et al. [2014] to estimate the mean and standard deviation of  
spectral acceleration at various vibration periods, assuming a lognormal distribution 
[Jayaram and Baker 2008]. 

To reduce the computational effort, for both Poisson and ETAS cases, we only consider 
events with magnitude M≥4 as we assume that lower magnitude events are not damaging. 
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In this manner, for every event in all of  the 100,000 stochastic catalogues, we simulate at 
the case study site a spectral acceleration (Sa) value. To determine the annual rate of  
exceeding various intensity levels, in each catalogue we count the number of  exceedances 
of  a specific level of  spectral acceleration, we sum all of  them for all the one-year-long 
catalogues and then divide the sum by the total number of  catalogues as given by Equation 
(6.4). To find the annual probability of  at least one exceedance we count the number of  
stochastic catalogues in which each given level of  spectral acceleration is exceeded at least 
once and divide it by the total number of  stochastic one-year-long catalogs simulated, as 
given by Equation (6.5). 
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In these equations, λ(IM>im) is the annual rate of exceeding im level, Ncat is the number of  
simulated catalogues (in our case 100,000), Nrup is the number of  ruptures (i.e., simulated 
earthquakes) in each stochastic catalogue and I(IM>im) is the indicator function which is 
equal to 1 if  im is exceeded and 0 otherwise. For a comprehensive description of  the hazard 
calculation methodology, including details about the ETAS and Poisson models used, 
please refer to Šipčić et al. [2022].  

We compute hazard curves, and subsequently fragility curves, by employing two 
conditioning IMs. First, we use spectral acceleration at the fundamental period of  the 
considered SDOF, i.e. Sa(0.2s), as it is a commonly used IM. As explained in the 
Introduction, due to the period-elongation and higher-mode effects, AvgSa might be a 
better choice for the derivation of  damage-dependent fragility curves. To that end, we also 
use AvgSa, defined for the range [0.2s-0.6s] with the 0.1s step. Figure 6.2 shows the hazard 
curves for both IMs, and both Poisson and ETAS models, in terms of  the annual 
probability of  exceedance (poe). As expected, these curves demonstrate that the annual 
probabilities of  exceedance are consistently higher across the entire range of  intensities 
when the ETAS model is utilized, particularly in the lower-intensity range. 
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Figure 6.2. Hazard curves in terms of the annual probability of exceedance (poe) obtained using ETAS 

and Poisson models for the year from 26/04/2017 to 26/04/2018. Results for (a) Sa(0.2s) 
and (b) AvgSa(0.2s-0.6s) are illustrated.  

Additionally, we perform the seismic hazard disaggregation [Bazzurro and Cornell 1999] 
for the Poissonian case, to obtain the probabilities that, for a given im value, the im 
exceedance is caused by rupture scenario with magnitude Mj and distance Rj. We first 
discretize all magnitude and distance values into the bins with width of  0.5 and 10km, 
respectively. We then use the expression given by Equation (6.7): 
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To obtain the numerator in Equation (6.7), which represents the rate of  exceeding im level 
given the rupture scenario with Mj and Rj, we count all scenarios in the simulated catalogues 
where im level is exceeded for that scenario. The denominator, which represents the rate 
of  exceeding im level is simply found as the sum of  all im exceedances. We repeat this 
procedure for every im level considered. In Table 6.2, we show the mean M and R values 
associated with ten intensity levels defined in terms of  Sa(0.2s). Similarly, in Table 6.3 we 
show the results in terms of  AvgSa(0.2s-0.6s). 

Table 6.2. Disaggregation results in terms of mean magnitude M and distance R, obtained 
using Sa(0.2s) as conditioning IM for ten intensity levels (IMLs). 

IML 1 2 3 4 5 6 7 8 9 10 

Sa(0.2s) [g] 0.1 0.2 0.3 0.4 0.45 0.50 0.55 0.60 0.84 1.10 

M 5.48 5.65 5.76 5.88 5.89 5.92 5.94 5.98 6.1 6.2 

R(km) 32.0 25.2 21.5 18.9 18.3 17.5 16.4 16.3 14.9 13.5 
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Table 6.3. Disaggregation results in terms of mean magnitude M and distance R, obtained using 
AvgSa(0.2s-0.6s) as conditioning IM for ten intensity levels (IMLs). 

IML 1 2 3 4 5 6 7 8 9 10 

AvgSa(0.2s-0.6s) [g] 0.1 0.2 0.3 0.4 0.45 0.50 0.55 0.65 0.70 0.75 

M 5.77 5.98 6.1 6.21 6.24 6.28 6.31 6.4 6.42 6.45 

R(km) 38.2 29.9 25.4 22.8 21.4 20.5 19.7 18.3 17.7 16.9 

 

6.2.3 Event-based methodology for the estimation of  the annual probability of  
exceeding a given damage state: fragility-based approach  

To compare different methods for the derivation of  damage-dependent fragility curves, 
with the obtained fragilities, we compute with the obtained fragilities annual probabilities 
of  exceeding a given damage state, defined in Table 6.1. We follow the event-based 
methodology, building upon the framework used for hazard computation. The steps 
followed are outlined below: 

1. Develop damage-dependent fragility curves: we derive the fragility curves 
dependent on the level of  initial damage (IDS), using one of  the three approaches 
described in the following section; 

2. Use the same 100,000 1-year-long stochastic catalogs that are generated using the 
ETAS model in the hazard analysis phase;  

3. For each stochastic catalogue: 
a. Initialize the computation by assuming the structure is in the intact 

damage state (IDS=0); 
b. For each earthquake event in the stochastic catalogue: 

i. Determine the value of  the conditioning intensity measure (IM*); 
ii. Based on the fragility functions for all pertinent DS (say, DS2, 

DS3 and DS4) corresponding to the initial DS of  the structure 
before the earthquake (say IDS1) and on the IM level, simulate 
the DS of  the structure at the end of  the earthquake using Monte 
Carlo simulationsb; 

iii. Set the DS at the end of  the earthquake as the initial DS for the 
following earthquake and select the set of  fragility curves 
conditioned on that IDS; 

c. Repeat for all earthquakes in that year 
d. Save the DS of  the structure at the end of  the year; 

 

b  DS is simulated 10 times, to add uncertainty due to the DS definition into the calculation. 
Investigation showed that after 10 simulations results become stable  
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4. Compute the annual rate of  exceeding any given DS by counting the number of  
catalogs where that DS was reached or exceeded and divide it by the total number 
of  generated catalogs using Equation (6.7): 
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In this equation, P(DS>ds) represents the annual probability of  exceeding the specified ds, 
Ncat is the total number of  stochastic catalogs (in our case, 100,000), and I(DS>ds) is the 
indicator function, equal to 1 if  the DS exceeds ds and 0 otherwise. In case one is interested 
in the computation of  annual probabilities in the traditional MS-only context, the 
procedure described above would be used with two adjustments – in the second step 
instead of  using stochastic catalogues generated with the ETAS model one would use those 
generated with the Poisson model and step 3biii would be omitted as it would be assumed 
that the structure is always in the intact state DS0.  

6.3 COMPUTATION OF DAMAGE-DEPENDENT FRAGILITIES 

6.3.1 Approach 1 

In the Introduction section, we mentioned the commonly employed approach for deriving 
damage-dependent fragility curves, which is the back-to-back incremental analysis (B2B-
IDA) method. This method builds upon the original incremental dynamic analysis (IDA) 
technique and extends it to derive fragility curves dependent on the initial damage state. To 
perform the analysis we use a set of  30 ground motion records from the NGA2-West 
database, as explained in more detail in Bakalis et al. [2018]. The initial step involves 
subjecting an intact structural model, to each of  the 30 input ground motions individually, 
with successive scaling. In this particular case, we scale these ground motions to 13 
successive intensity levels. To calculate the fragility function, we assume it follows a 
lognormal distribution. Based on the results of  the structural analysis, we estimate the 
median and standard deviation of  the fragility function using the method of  moments 
[Baker 2015]. These estimates are calculated as follows: 
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In these equations, 


is the estimate of  the median IM level associated with the exceedance 

of  the damage state and 


 the estimate of  the standard deviation of  ln(IM) of  the fragility 

function. The number of  ground motions considered is n, while IMi is the intensity level 
corresponding to the onset of  the DS for the ith ground motion. The hat sign above the 
median and standard deviation implies that these are only estimates of  the true values. 
However, for simplicity, we will omit the hat in the remainder of  the text.  
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Figure 6.3a shows the obtained IDA curves, for the case of  the IM*=Sa(0.2s) and 
maximum ductility as an EDP. The median, 5th and 95th percentile curves are indicated with 
darker grey lines. Figure 6.3b displays the corresponding fragility curves for the four 
defined damage states. Keep in mind that these results correspond to the intact structure. 
Similarly in Figure 6.4 we show the results for  IM*=Sa(0.2s) and DI as an EDP. In addition, 
we show in Figure 6.5 the fragility curves obtained using IM*=AvgSa(0.2s-0.6s).  

  
Figure 6.3. (a) IDA curves for the intact system using IM*=Sa(0.2s) and maximum ductility as an 

EDP. Median, 5th and 95th percentile are indicated with the darker lines (b) Corresponding 
fragility curves for the four damage states that are defined in Table 6.1. 

  
Figure 6.4. (a) IDA curves for the intact system using IM*=Sa(0.2s) and DI as an EDP. (b) 

Corresponding fragility curves for the four damage states that are defined in  Table 6.1. 
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Figure 6.5. Fragility curves for the four damage states that are defined in  Table 6.1 using 

IM*=AvgSa(0.2s-0.6s) and (a) maximum ductility and (b) DI as an EDP.  

Having completed the analysis of  the intact structure, we proceed to calculate scaling 
factors that will cause the ground motions to be strong enough to be “damaging” to a given 
level of  severity. These scaled ground motions are intended to induce a given damage state 
at the end of  the shaking that will be utilized as the initial damaged state (IDS) of  the 
structure for successive ground motions. For instance, to bring the structure to IDS1, we 
scale the “natural” ground motion to cause the maximum ductility in the structure within 
the [1.5 – 2.0] range. We then carry out IDA by applying the 30 ground motions 
incrementally again, following the same procedure as for the intact case. Using the same 
methodology as previously outlined, we compute fragility functions (i.e., DS2|IDS1, 
DS3|IDS1, and DS4|IDS1) that are now conditioned on the IDS1 of  the structure. This 
process is repeated for the damage states DS2 and DS3 to compute damage-dependent 
fragility curves (namely, DS3|IDS2 and DS4|IDS2 and DS4|IDS3). The same procedure 
is then repeated for the case when DI is used, and for both conditional IMs.  

Figure 6.6a shows, for the case of  IM*=Sa(0.2s), the damage-dependent fragility curves for 
the collapse case (DS4) for the three initial damage states (i.e. IDS1, IDS2 and IDS3) along 
with the fragility curve for the intact structure, obtained when the maximum ductility ratio 
is used. The results for DI are illustrated in Figure 6.6b. Similarly, Figure 6.7 shows the 
results for the case of  IM*=AvgSa(0.2s-0.6s). In all cases, the reduction in capacity with 
increasing levels of  severity of  the IDS is evident: the more damage the system suffers 
from a previous shock, the lower its residual capacity.  

The estimated parameters of  the damage-dependent fragility curves can be found in Table 
6.4. Damage-dependent fragility function parameters (µ/β) obtained with Approach 1 and 
IM*=Sa(0.2s).Table 6.4 and Table 6.5, for both EDPs considered and for the case when 
IM*=Sa(0.2s) and IM*=AvgSa(0.2s-0.6s), respectively. The estimated median and standard 
deviation values of  the capacity in the fragility curves for all DSs developed for the intact 
structure are almost insensitive to the EDP used for gauging the occurrence of  each 
damage state, for both conditioning IMs. This is not entirely surprising since the DI has a 
significant contribution from the maximum displacement, which is the numerator of  the 
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ductility ratio. However, the estimates of  these two quantities differ significantly for the 
fragility curves developed when the structure is already damaged (i.e., IDS from 1 to 3). 

It is interesting to note, however, that the reduction in capacity is more pronounced when 
DI is used, due to the superior ability of  DI to capture the accumulation of  damage, as 
shown in Section 4 of  this thesis. As an example (see Table 6.4), when DI is used as the 
EDP the median estimate of  the collapse capacity (i.e., of  DS4) reduces by approximately 
1.17, 1.46, and 2.3 when the structure is already in IDS1, IDS2 and IDS3, respectively. This 
reduction is only approximately 1.08, 1.14, and 1.41 when the maximum ductility ratio is 
used.  

When AvgSa(0.2s-0.6s) is used as a conditioning IM, the difference between the estimates 
of  the capacity at DS3 and DS4 is reduced. Furthermore, when compared with the Sa(0.2s) 
case, the dispersion estimates of  the capacities are lower for the more severe damage states 
and higher for the less severe ones.  

  
Figure 6.6. Collapse (i.e., DS4) fragility curves of the system conditioned on the different initial 

damage states, obtained using IM*=Sa(0.2s) and measured in terms of (a) maximum 
ductility ratio and (b) DI. Fragility curves are estimated using Approach 1. 

  
Figure 6.7. Collapse (i.e., DS4) fragility curves of the system conditioned on the different initial 

damage states, obtained using IM*=AvgSa(0.2s-0.6s) and measured in terms of (a) 
maximum ductility ratio and (b) DI. Fragility curves are estimated using Approach 1. 
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Table 6.4. Damage-dependent fragility function parameters (µ/β) obtained with Approach 1 and 
IM*=Sa(0.2s).  

 Ductility ratio DI 

 IDS0 IDS1 IDS2 IDS3 IDS0 IDS1 IDS2 IDS3 

DS1 0.27/0.15 - - - 0.26/0.14 - - - 

DS2 0.32/0.20 0.28/0.30 - - 0.32/0.21 0.13/0.40 - - 

DS3 0.38/0.26 0.36/0.33 0.33/0.37 - 0.38/0.26 0.33/0.27 0.25/0.43 - 

DS4 0.41/0.31 0.38/0.34 0.36/0.37 0.29/0.42 0.41/0.31 0.35/0.37 0.28/0.43 0.18/0.6 

 

Table 6.5. Damage-dependent fragility function parameters (µ/β) obtained with Approach 1 and 
IM*=AvgSa(0.2s-0.6s). 

 Ductility ratio DI 

 IDS0 IDS1 IDS2 IDS3 IDS0 IDS1 IDS2 IDS3 

DS1 0.22/0.28 - - - 0.21/0.28 - - - 

DS2 0.25/0.26 0.23/0.25 - - 0.26/0.21 0.11/0.23 - - 

DS3 0.30/0.16 0.29/0.13 0.27/0.15 - 0.31/0.16 0.26/0.15 0.20/0.17 - 

DS4 0.33/0.15 0.30/0.12 0.28/0.15 0.23/0.17 0.32/0.15 0.28/0.15 0.23/0.17 0.15/0.33 

 

6.3.2 Approach 2 

While IDA and B2B-IDA offer valuable insights for various applications, they do not 
inherently ensure site hazard consistency, which can potentially lead to biased fragility 
estimates, as demonstrated in prior studies for both mainshock-only [e.g., Kohrangi et al. 
2017] and clustered seismicity [Papadopoulos et al. 2020] cases. Here we investigate further 
an alternative approach originally proposed by Papadopoulos et al. [2020] to derive the 
damage-dependent fragility curve where MS ground motions are selected in a hazard-
consistent manner followed by the MS-consistent AS ground motion selection. This 
method is based on the following four steps.  

Step 1: Select MS ground motions 

The first step in this methodology involves selecting MS ground motions using the 
Conditional Spectrum (CS) approach [Jayaram et al. 2011], as it is commonly done when 
one wants to ensure hazard consistency. With this approach, records are selected to match 
the target distribution in terms of  spectral ordinates conditioned on the chosen IM*(e.g. 
Sa(T1), AvgSa) for the hazard level of  interest extracted from the corresponding hazard 
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curve. Seismic hazard disaggregation is then performed to identify the scenarios (in terms 

of  magnitude M, distance R and residual ɛ for the chosen IM* level) that contribute the 
most to to the exceedance of  that IM* level at the site. For every scenario, we can then 
compute the mean and standard deviation of  the natural logarithm of  the spectral ordinates 
as: 
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where i represents the scenario, µi
ln(Sa) and σi

ln(Sa) are the unconditional logarithmic mean 

spectral accelerations and associated standard deviations obtained from the GMPE, ρ(T*) 
represents the correlation coefficient between the residuals of  the IM* and Sa(T) across all 
periods of  interest, which can be calculated with Baker and Jayaram [2008] or Abrahamson 
et al. [2014] correlation structure. Every ith scenario is associated with a weight, pi, obtained 
from the disaggregation, which is then used to compute the target conditional mean and 
standard deviation of  spectral accelerations Sa(T) given IM*, by combining all scenarios as 
follows:  
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In this equation, p  is the sum of  all the weights for the considered scenarios. For every 

record that we want to select (for a total of, say, Nrec), we then randomly draw a rupture 
scenario (M and R) from the seismic disaggregation probability mass function (pmf) for 
that IM* level, and for the given ith rupture we create the conditional spectrum with mean 
and standard deviation found with Equations (6.10) and (6.11), respectively. We then 
generate a random realization by sampling correlated lnSa values from the multivariate 
normal distribution and select a record (usually scaled) from an available database that best 
matches this realization. One should keep in mind that the target CS is defined in terms of  
GMRotD50 [Boore 2010] to maintain full consistency with the hazard computations.  

As an illustrative example, we show in Figure 6.8a the target mean spectra found with 
Equation (6.12) for our case study site, for IM*=0.2s and IML5 (i.e. Sa(0.2s)=0.45g, see 
Table 6.2). Additionally, we show for record r=1 mean CS calculated with Equation (6.10) 
for the rupture with M=5.25 and R=5km, sampled from the pmf  of  the seismic 
disaggregation. In  Figure 6.8b we then show a realization of  that CS and the ground 
motion that is selected to match it.  
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Figure 6.8. (a) Target mean CS calculated with Equation (6.12) and mean CS for the sampled rupture 

(M=5.25 and R=5km); (b) Realization of the mean CS obtained for the sampled rupture 
and GM selected to match that CS. Illustrated example refers to the case when 

IM*=Sa(0.2s) and IML5 (i.e. Sa(0.2s)=0.45g) 

The described process is repeated for every record, ensuring that each one is associated 
with the previously drawn M-R rupture scenario. This is a crucial piece of  information for 
the next step of  the framework (unlike the procedure proposed by Jayaram et al. [2011] 
that is typically used for this purpose). The simulation procedure is repeated several times 
and the set of  records that best matches the target, given by Equations (6.12) and (6.13), is 
selected. The accuracy of  the matching to the target is calculated using the sum of  squared 
errors (SSEs) [Baker and Lee 2018] metric defined with Equation (6.14). 
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where IMk is the spectral acceleration at Tk, mlnIMk is the sample mean of  lnIMk, and slnIMk 
is the sample standard deviation of  lnIMk, both estimated from the selected motions. The 
quantities µlnIMk and σlnIMk are the target conditional means and standard deviations, p is the 
number of  vibration periods of  interest in the target spectrum, and w is a weight factor 
here assumed equal to 2.0. Once the initial set of  records is selected, one can perform the 
so-called “greedy” optimization [Jayaram et al. 2011] to improve the match to the target 
(refer to Papadopoulos et al. [2020] for more details).  

Using the results of  the disaggregation and procedure described above, we calculate the 
target mean and standard deviation for each intensity level, with both conditioning IMs. 
Finally, we select 100 ground motions for each intensity level using the database described 
in more detail in Iñarritu et al. [2023] and allowing for the maximum scaling factor of  10. 
In Figure 6.9a, we show, for IML5 and IM*=Sa(0.2s) the target mean CS and target mean 
CS ± two target standard deviations along with the mean and mean ± two standard 
deviations of  the selected set of  records. Similarly, results for IM*=AvgSa(0.2s-0.6s) are 
illustrated in Figure 6.9b.  
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Figure 6.9. Mean (solid line) and mean ± 2 standard deviations (dashed lines) of the target CS and of 

the selected set of 100 records for IML5. Results obtained with (a)  IM*=Sa(0.2s) and (b) 
IM*=AvgSa(0.2s-0.6s) are shown.  

Once we have the selected mainshock ground motions, we run the NLRHA on our SDOF 
system. Using the results of  the structural analysis and the maximum likelihood method 
[Baker 2015] we estimate the median and standard deviation of  the fragility curve which is 
assumed to follow a lognormal distribution, similar to Approach 1. In Figure 6.10, we show 
the response of  the system in terms of  maximum ductility for each intensity level 
considered and the derived fragility curves for the intact state of  the structure and defined 
damage states, using maximum ductility ratio as an EDP and IM*=Sa(0.2s). Similarly, 
results for DI are illustrated in Figure 6.11. One should note that in Figure 6.11a DS1 is 
not indicated as it corresponds to DI=0, which can’t be illustrated due to the logarithmic 
scale used.  

 
 

Figure 6.10. (a) Maximum ductility ratio response of the SDOF under MS ground motions with the 
damage states, as defined in Table 6.1, indicated with vertical dashed lines, and (b) 
corresponding fragility curves based on Sa(0.2s). 
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Figure 6.11. (a) DI of the SDOF under MS ground motions with the damage states, as defined in Table 
6.1, indicated with vertical dashed lines and (b) corresponding fragility curves based on 
Sa(0.2s). 

In Figure 6.12 we show the fragility curves of  the intact system, for both EDPs, obtained 
using IM*=AvgSa(0.2s-0.6s).  

  
Figure 6.12. Fragility curves based on IM*=AvgSa(0.2s-0.6s) for damage states as defined in Table 6.1, 

using (a) maximum ductility ratio and (b) DI.  

Table 6.6 provides the estimates of  the parameters’values of  the capacity associated with 
the fragility functions for each considered case.  

There are two important considerations to make here. First, the parameters of  the fragility 
functions obtained through the MSA and CS differ from those derived via IDA (in 
Approach 1). Specifically, the median capacity and dispersion for all damage states are 
higher in the MSA-CS scenario. The increase in median capacity can be attributed to the 
fact that the set of  records adapted from Bakalis et al. [2018] and used for IDA in our study 
is selected for a location in Greece, which is characterized by higher seismic hazard than 
that of  Perugia, our case study site. Consequently, this set of  records is, on average, more 
“aggressive” for this structure than the one employed for Perugia. Additionally, the IDA 
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record set exhibits, by chance and not by design, a lower IM dispersion compared to that 
of  the CS record set, resulting in reduced variability in structural response.  

Secondly, such an extensive dataset of  100 records per stripe was not necessary to derive 
robust fragility curves. Even with a significantly lower number of  records, the estimated 
mean and standard deviation did not substantially differ (as confirmed by testing with 30 
records per stripe). Nonetheless, the rationale behind using such a high number of  records 
will become evident in the subsequent sections. 

Table 6.6. Values of the fragility function parameters (µ/β) obtained 
with Approach 2 for the intact structure. 

 Sa(0.2s) AvgSa(0.2s-0.6s) 

 Ductility ratio  DI Ductility ratio DI 

DS1 0.30/0.30 0.28/0.26 0.25/0.33 0.24/0.33 

DS2 0.36/0.33 0.36/0.32 0.30/0.28 0.30/0.27 

DS3 0.45/0.41 0.45/0.41 0.35/0.23 0.35/0.23 

DS4 0.48/0.46 0.48/0.45 0.36/0.20 0.37/0.20 

 

Step 2: Simulate seismic sequences 

The second step involves generating realistic aftershock sequences using the M and R 
values associated with each MS ground motion selected in the previous step. There are 
different ways to accomplish this and we will mention three here. Following Papadopoulos 
et al. [2020] one can use the ETAS model and the outlined steps: 

- Consider the selected MS as the parent event; 
- Sample the number of  direct offspring from the productivity function (Poisson 

distribution with the mean number of  offspring events k given in Equation (6.15) 
for the mainshock with magnitude mi); 

- Determine the location of  offspring events based on the spatial distribution, 
estimating the distance r from the mainshock with magnitude mi, and the angle θ 
(the polar coordinate) with Equation (6.16); 

- Calculate the inter-arrival time Δt between parent and offspring events using 
Equation (6.17). 

- Estimate the magnitude of  each sampled aftershock event using the Gutenberg-
Richter (GR) law and Equation (6.18) 

In these equations, A, a, p, c, D, q, γ and b are ETAS parameters, as explained in the hazard 
analysis part (i.e., Section 6.2.2),  ur, uθ, um and ut represent uniformly distributed random 
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variables over the range (0, 1), and mmin is the minimum magnitude considered. This 
simulation process is repeated until there are no new events triggered or the triggered 
events fall outside the defined spatiotemporal window of  interest. 
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Alternatively, one can use the generalized Omori model [Shcherbakov et al. 2005] to 
simulate sequences, namely the number of  events with associated magnitude and time 
stamps, given the M-R values of  the causative event of  the selected mainshock record. 
These are the steps: 

- Draw the number of  triggered events from a Poisson distribution with the mean 
number of  events calculated using Equation (6.15); 

- Calculate the timestamp and magnitude of  the triggered events based on 
Equations (6.17) and (6.18), respectively; 

- Ensure that the maximum aftershock magnitude does not exceed the magnitude 
of  the triggering mainshock. 

In the case of  the Omori model, the parameters to be estimated are a, c, p, and b. It is worth 
noting that the literature provides different values of  the ETAS and Omori parameters, 
which depend on the region of  interest and the quality of  the available data used for 
calibration [Seif  et al. 2017; Šipčić et al. 2022]. It is crucial to highlight that the values of  
the set of  Omori parameters differ from those estimated in the ETAS model because the 
values of  the Omori parameters embedded in ETAS are applied locally to every generation 
of  aftershocks.  More specifically, in the ETAS model, every event is capable of  triggering 
new events while in the generalized Omori law model, all aftershocks are assumed to be 
triggered by a single MS event and, therefore, the parameter values refer to entire sequences. 

)1/()1()( min10)( −−−+= ppMmba
i cmk i  (6.19) 

To simplify the process even further, one can assume that the entire sequence of  events 
can be represented by a single aftershock with, on average, a magnitude mAS=mMS -1.2 [Båth 
1965]. Since the generalized Omori law and Bath’s law models do not consider the spatial 
distribution of  aftershocks, one can assume that aftershocks occur within a circular area 
around the mainshock with a radius equal to three rupture lengths estimated using the 
scaling law of  Wells and Coppersmith [1994]. Alternatively, one can assume, more 
unrealistically, that the epicenter locations of  the mainshock and aftershock are the same, 
as done in previous studies [e.g., Goda and Taylor, 2012; Yeo and Cornell, 2009].  

Within our study, we use the ETAS model to generate seismic sequences of  events with 
the set of  ETAS parameters adopted from  Šipčić et al. [2022], similar to the hazard analysis 
part.  
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Step 3: Select AS ground motions 

To select realistic ensembles of  AS ground motions (possibly for multiple AS) for each 
single MS ground motion obtained in the first two steps, we need to consider the 
distribution of  the AS spectral accelerations at different periods of  vibration that are 
conditional on the spectral accelerations of  the specific MS record. To do so we use the 
MSAS-CS technique developed by Papadopoulos et al. [2020]. As shown by Baker and 
Jayaram [2008] for individual records and confirmed later by Papadopoulos et al. [2019] for 
MS-AS pairs, the joint distributions of  spectral accelerations at multiple periods are well 
represented by a multivariate lognormal distribution. The unconditional mean and 
variance-covariance matrix of  the joint MS-AS log-spectral acceleration distribution are 
found using Equations (6.20) and (6.21). The conditional (on the MS ground motion 
spectral ordinates) mean and variance-covariance matrix for the AS ground motion are 
given by Equations (6.22) and (6.23) 
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where xMS is the vector of  observed MS logarithmic spectral accelerations, µlnSa(Ti) and σlnSa(Ti)  
are unconditional mean and standard deviation of  the spectral accelerations extracted from 

the GMPE. To find the covariance matrix it is necessary to have an estimate of  ρ(Ti, Tj) 
which represents the correlation coefficient between the logarithmic spectral accelerations 
at Ti and Tj of  either MS or AS GM. More specifically, to find Σ11 and Σ22 it is necessary to 

have ρ(Ti
AS, Tj

AS) and ρ(Ti
MS, Tj

MS), respectively, and such quantities can be found using the 
model proposed by Baker and Jayaram [2008] or Abrahamson et al. [2014], similarly as done 

in the first step of  the process. To evaluate Σ12 and Σ21 we need ρ(Ti
AS, Tj

MS) and ρ(Ti
MS, 

Tj
AS), which can be found using the correlation structure developed by Papadopoulos et al. 

[2019]. For more details regarding the MSAS-CS procedure briefly discussed here, see 
Papadopoulos et al. [2020].  

With the M-R of  the MS, the spectrum of  the MS ground motion and the M-R of  the AS, 
we can first generate a realization of  the AS response spectrum by sampling from the joint 
MS-AS Sa distribution and then select the ground motion (which is usually scaled) that best 
matches the AS sampled target spectrum (i.e., it has the lowest sum of  the squared errors 
across periods).  For computational simplicity, only one realization of  the AS ground 
motion is drawn. As many selected AS ground motions will have very low intensity, one 
can set a threshold below which all sampled GMs are discarded and the simulation is 
repeated. As shown by Papadopoulos et al. [2020] the potential bias caused by 
systematically disregarding low-intensity AS ground motions is not expected to be of  
importance as long as the intensity threshold for discarding is kept reasonably low, i.e., the 



Nevena Šipčić 

 

134 

small magnitude and/or large distance MS ruptures are not forced to produce AS 
sequences with unrealistically large M and associated ground motions.  

Here, we retain only those events that lead to a Sa(0.2s) greater than 0.1g, as it is tenable to 
assume that the lower-intensity ground motions would not be damaging to the considered 
SDOF system.  

Step 4: Derive the damage-dependent fragility curves 

To derive damage-dependent fragility curves, we first assess the damage state of  the 
structure after the mainshock event. Subsequently, we categorize the response data into 
four distinct groups, each corresponding to IDS0, IDS1, IDS2, and IDS3 (recall that DS4 
means collapse here). As an example, after the MS analysis, when IM*=Sa(0.2s) is used and 
damage states are categorized using maximum ductility ratio, we have 267 ground motions 
in IDS0, 98 in IDS1, 139 in IDS2, and only 31 in IDS3. The remaining 465 GMs already 
caused collapse. The reason for employing 100 MS records per stripe was to ensure that we 
had a sufficient number of  ground motions available for these different damage states. 
Based on the sample of  intensity-response pairs in each considered IDS we estimate the 
median and standard deviation of  the fragility curve, dependent on that IDS, using the 
maximum likelihood method.  

Figure 6.13a shows, for the case of  IM*=Sa(0.2s), the damage-dependent fragility curves 
for the collapse case (DS4). These curves correspond to the four initial damage states (i.e. 
IDS0, IDS1, IDS2 and IDS3) and the maximum ductility ratio as an EDP. Analogous 
results for DI are illustrated in Figure 6.13b. Similarly, Figure 6.14 shows the results for the 
case of  IM*=AvgSa(0.2s-0.6s). The estimated parameters of  the damage-dependent 
fragility curves can be found in Table 6.7 and Table 6.8Table 6.4. Damage-dependent 
fragility function parameters (µ/β) obtained with Approach 1 and IM*=Sa(0.2s)., for both 
EDPs considered and for the case when IM*=Sa(0.2s) and IM*=AvgSa(0.2s-0.6s), 
respectively. 

First, it is important to highlight that, unlike in Approach 1, fragility curves conditioned on 
the IDS0 are not the same as those corresponding to the intact case (see Table 6.6). This is 
because when fragility curves are estimated for the intact case (Figure 6.10, Figure 6.11 and  
Figure 6.12) MS ground motions are used. On the contrary, fragility curves conditioned on 
the IDS0 illustrated in Figure 6.13 and Figure 6.14 are obtained using both MS and AS 
ground motions, resulting in different hazard compared to the MS-only case. Therefore, 
this difference is not surprising.  

Secondly, one can see from the figures below that in all cases we have a reduction in the 
median capacity with increasing levels of  severity of  the IDS, as expected. However, there 
is a significant increase in dispersion, which, for some intensity levels causes the crossover 
of  the fragilities. This implies that the structure that experienced more damage has lower 
probability of  collapse compared to the less damaged structure,  particularly evident at very 
high intensities where data points are limited. It is important to notice, nonetheless, that 
this counterintuitive phenomenon, seems to be mitigated to some extent when we use 
AvgSa(0.2s-0.6s) as a conditioning IM and DI as an EDP. Note that in Table 6.8, values for 
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the DS4|IDS3 are not reported as the standard deviation is unreasonably high. Instead, in 
the rest of  the study for that fragility curve we will use the parameters obtained for 
DS4|IDS2.  

  
Figure 6.13. Collapse (i.e., DS4) fragility curves of the system conditioned on the different initial 

damage states, obtained using IM*=Sa(0.2s) and measured in terms of (a) maximum 
ductility ratio and (b) DI. Fragility curves are estimated using Approach 2.  

  
Figure 6.14. Collapse (i.e., DS4) fragility curves of the system conditioned on the different initial 

damage states, obtained using IM*=AvgSa(0.2s-0.6s) and measured in terms of (a) 
maximum ductility ratio and (b) DI. Fragility curves are estimated using Approach 2. 

The approach described here, developed by Papadopoulos et al. (2020), offers a MS-AS 
record selection scheme where the spectral correlation between the MS and AS ground 
motion pairs is respected and the generated AS events are realistic. Additionally, it is flexible 
in the sense that MS ground motion record selection can be performed separately from the 
AS one, even with different approaches (e.g., CS, GCIM, cloud), if  so desired. This 
approach eliminates the need for distinct databases of  MS and AS ground motions, thus 
avoiding the task of  identifying seismic sequences. However, it is important to acknowledge 
certain limitations of  this approach.  
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Firstly, although this method maintains consistency between MS and AS ground motions, 
it does not enforce hazard consistency for the aftershock ground motions. Unlike MS 
ground motions, which have target mean and variance spectra, AS ground motions are 
randomly sampled. Secondly, this approach requires a seismic sequence generation model 
(e.g., Omori, ETAS), which often necessitates parameter calibration. Furthermore, the 
generated seismic sequences are usually not consistent with the MS hazard assessment. 
Specifically, in our case, MS ground motions are selected based on hazard computed using 
the Poisson model, while AS ground motions are generated using the ETAS model, which 
does not differentiate between MS and AS events but rather defines seismicity in terms of  
background and triggered events. Lastly, to obtain stable fragility estimates, a substantial 
number of  MS and AS ground motions are required, making the method computationally 
intensive. Finally, while it is clear that hazard-consistent mainshock record selection can 
have a significant effect on the fragility estimates it is still unclear how important this is for 
the aftershock GMs given their secondary effect.  

With this in mind, we propose Approach 3, which aims to make a balance between 
Approaches 1 and 2.  

Table 6.7. Damage-dependent fragility function parameters (µ/β) obtained with Approach 2 and 
IM*=Sa(0.2s).  

 Ductility ratio DI 

 IDS0 IDS1 IDS2 IDS3 IDS0 IDS1 IDS2 IDS3 

DS1 0.31/0.26 - - - 0.25/0.42 - - - 

DS2 0.38/0.25 0.35/0.42 - - 0.36/0.24 0.30/0.57 - - 

DS3 0.50/0.34 0.46/0.44 0.36/0.61 - 0.49/0.31 0.45/0.33 0.33/0.58 - 

DS4 0.54/0.36 0.51/0.45 0.49/0.72 0.39/1.22 0.52/0.34 0.52/0.37 0.43/0.56 0.34/1.11 

 

Table 6.8. Damage-dependent fragility function parameters (µ/β) obtained with Approach 2 and 
IM*=AvgSa(0.2s-0.6s). 

 Ductility ratio DI 

 IDS0 IDS1 IDS2 IDS3 IDS0 IDS1 IDS2 IDS3 

DS1 0.26/0.37 - - - 0.25/0.51 - - - 

DS2 0.31/0.27 0.21/0.28 - - 0.32/0.26 0.23/0.57 - - 

DS3 0.36/0.22 0.26/0.27 0.20/0.43 - 0.37/0.21 0.31/0.2 0.18/0.50 - 

DS4 0.39/0.25 0.28/0.28 

 

3 

0.23/0.43 - 0.39/0.21 0.32/0.20 0.22/0.37 0.08/1.03 
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6.3.3 Approach 3 

Approach 3 is the combination of  the two previous approaches. More specifically, we first 
compute the fragility of  the undamaged structure, employing the hazard-consistent CS and 
MSA to select ground motions, as described in Step 1 of  Approach 2. These values can be 
found in Table 6.6. Subsequently, we apply the B2B-IDA procedure, as explained in 
Approach 1, to determine the reduction in the median capacity of  the intact structure. 
These values are obtained by dividing the median capacities given in Table 6.4 and Table 
6.5 corresponding to different IDSs with the median capacities of  the structure in the intact 
state. We then use these ratios to multiply the capacity of  the structure in the intact state 
obtained with Approach 2, as given in Table 6.6. Similarly, we do the same with the standard 
deviation that increases with the severity level of  the pre-existing damage. In this manner, 
we obtain the parameters in Table 6.9 and Table 6.10 for IM*=Sa(0.2s) and 
IM*=AvgSa(0.2s-0.6s), respectively. 

Table 6.9. Damage-dependent fragility function parameters (µ/β) obtained with Approach 3 and 
IM*=Sa(0.2s).  

 Ductility ratio DI 

 IDS0 IDS1 IDS2 IDS3 IDS0 IDS1 IDS2 IDS3 

DS1 0.30/0.30 - - - 0.28/0.26 - - - 

DS2 0.36/0.33 0.31/0.50 - - 0.36/0.32 0.15/0.60 - - 

DS3 0.45/0.41 0.43/0.52 0.39/0.58 - 0.45/0.41 0.39/0.42 0.29/0.67 - 

DS4 0.48/0.46 0.44/0.50 0.42/0.54 

.4 

0.34/0.62 0.48/0.45 0.41/0.53 0.32/0.62 0.21/0.87 

 

Table 6.10. Damage-dependent fragility function parameters (µ/β) obtained with Approach 3 and 
IM*=AvgSa(0.2s-0.6s). 

 Ductility ratio DI 

 IDS0 IDS1 IDS2 IDS3 IDS0 IDS1 IDS2 IDS3 

DS1 0.25/0.33 - - - 0.24/0.33 - - - 

DS2 0.30/0.28 0.28/0.27 - - 0.30/0.27 0.13/0.30 - - 

DS3 0.35/0.23 0.34/0.19 0.31/0.21 - 0.35/0.23 0.29/0.21 0.22/0.24 - 

DS4 0.36/0.20 0.33/0.16 0.305/0.20 0.26/0.23 0.37/0.20 0.32/0.20 0.26/0.23 0.17/0.40 
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6.4 EVENT-BASED METHODOLOGY FOR THE ESTIMATION OF THE ANNUAL 

PROBABILITY OF EXCEEDING A GIVEN DAMAGE STATE: DIRECT ANALYSIS METHOD 

In this section, we compute the annual probabilities of  exceeding different damage states 
using the so-called direct analysis, which serves as a benchmark in this context. We perform 
the direct analysis for two variants: (i) the MS-only case where the seismic hazard is modeled 
with Poisson model and it is assumed that the structure is repaired after each event and (ii) 
the case where all events in the sequence are considered using the ETAS model and damage 
accumulation is accounted for. The procedure for computing annual probabilities of  
exceedance via direct analysis is outlined below for both cases. 

MS-only Case: 

1. Use the same 100,000 1-year-long stochastic catalogs generated in the hazard 
assessment phase with the Poisson model (refer to Section 6.2.2 for detailed 
information) 

2. For each stochastic catalogue n: 
- For each ith rupture in catalogue n: 

o Using the associated properties (e.g., rake, dip, slip, seismogenic depth) 
and the Abrahamson et al. [2014] GMPE, determine the mean and 
standard deviation of  the Sa’s all oscillator periods and related covariance 
matrix and use them to construct a multivariate normal distribution. Keep 
in mind that Sa is defined in terms of  GMRotD50 [Boore 2010]; 

o Generate a random realization of  the ground motion response spectrum 
by sampling correlated lnSa values from the multivariate normal 
distribution; 

o Select the ground motion from an available database that best matches 
this realization; 

o Using the selected record run the NLRHA; 
o Save the DS of  the structure at the end of  the run; 

3. Compute the annual probability of  exceeding different damage states by simply 
counting the number of  catalogs in which exceedance occurs and dividing that 
number by the total number of  catalogs as expressed by Equation (6.7).  

Seismic sequences Case: 

1. Use the same 100,000 1-year-long stochastic catalogs generated in the hazard 
assessment phase with the ETAS model (refer to Section 6.2.2 for detailed 
information) 

2. For each stochastic catalogue n: 
- For each ith rupture in the catalogue: 

o If  it is the first event in the catalogue (i=1): 

▪ Using the associated properties (e.g., rake, dip, slip and 
seismogenic depth) and Abrahamson et al. [2014] GMPE, 
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determine the mean, standard deviation, and unconditional 
covariance matrix; 

o Else: 

▪ Using the associated properties, (e.g., rake, dip, slip and 
seismogenic depth) and Abrahamson et al. [2014] GMPE, 
determine the mean and standard deviation of  the Sa’s all 
oscillator periods and related covariance matrix and use them to 
construct a multivariate normal distribution conditional on the 
Sa’s of  the ground motion of  the (i-1)th rupture using Equations 
(6.20)-(6.23); 

o Generate a random realization by sampling correlated lnSa values from 
this multivariate normal distribution; 

o Select the ground motion from an available database that best matches 
this realization; 

o Add 10 seconds of  zero acceleration at the end of  the ground motion 
allowing for the system to come to rest when subject to this zero-padded 
ground motion;  

o Using this zero-padded record run the NLRHA; 
- Save the DS of  the structure; 

3. Compute the annual probability of  exceeding different damage states by simply 
counting the number of  catalogs in which the exceedance of  the EDP value 
corresponding to the onset of  such a DS occurs and dividing by the total number 
of  catalogs, as expressed by Equation (6.7). 

We argue that the results obtained with direct analysis serve as a benchmark against which 
the results of  the other three fragility curve-based approaches should be compared. This 
approach circumvents the need for conditioning on an IM and avoids the computation of  
fragility curves. However, it is important to note that direct analysis poses a substantial 
computational burden due to the many analyses one needs to run. In our specific case, this 
exercise was made feasible primarily due to the simplicity of  the SDOF system. As stated 
earlier, to mitigate the computational load to some extent, we restricted the analysis to 
ground motions with Sa(0.2s) exceeding 0.1g, considering lower-intensity motions as non-
damaging. Consequently, we performed a reduced set of  2394 analyses in the MS-only case 
and 5673 analyses in the case of  seismic sequences, optimizing computational efficiency 
while still providing meaningful results. 

6.5 RESULTS 

In the previous sections, we described four approaches that can be used to find the annual 
probabilities of  exceeding different damage states, discussing the advantages and 
disadvantages of  each approach. The first three are based on the calculation of  damage-
dependent fragility curves (or simply fragility curves in the MS-only case) while the last one, 
which serves as the benchmark, is based on the results of  direct analysis. Two variants of  
the direct analysis approach were carried out: the mainshock-only seismicity case and the 
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clustered seismicity case. Of  course, for consistency, the thresholds of  the EDP (either 
maximum ductility or DI) assigned to the onset of  each one of  the four damage states are 
identical in all four cases.  

We first show the annual probabilities of  exceeding different damage states in the MS-only 
case (Figure 6.15 and Figure 6.16), which utilizes the Poisson model for hazard calculations 
and assumes that the structure is repaired after each seismic event. In this case, by design, 
results obtained with Approach 3 are the same as those obtained with Approach 2. One 
can see that the results obtained using Approach 2, which is a hazard-consistent approach, 
are much closer to the benchmark results than those derived from the IDA (Approach 1). 
These results were expected given the differences we observed in the fragility curves as the 
obtained median capacity and dispersion for all damage states are higher in Approach 2.  

It is also interesting to notice that the ratio between the annual probability of  exceedance 
obtained with IM*=AvgSa(0.2s-0.6s) and that obtained with IM*=Sa(0.2s), is significantly 
lower when we use Approach 2, for both considered EDPs, as illustrated in Figure 6.17. 
These findings prove once again the superiority of  the hazard-consistent methods for 
record selection.  

  
Figure 6.15. Annual probabilities of exceedance (poe) of the four DSs for the MS-only case when 

maximum ductility ratio is used as the EDP. Results obtained using (a) Sa(0.2s) and (b) 
AvgSa(0.2s-0.6s). 
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Figure 6.16. Annual probabilities of exceedance (poe) of the four DSs for the MS-only case when DI 

is used as the EDP. Results obtained using (a) Sa(0.2s) and (b) AvgSa(0.2s-0.6s). 

  
Figure 6.17. The ratio between the annual probability of exceeding given DS obtained when 

IM*=AvgSa(0.2s-0.6s) and when IM*=Sa(0.2s) for the case when EDP is (a) maximum 
ductility ratio and (b) DI. Illustrated results refer to the Poissonian (MS-only) case.  

In Figure 6.18 and Figure 6.19, we show the results obtained for the clustered seismicity 
case, using maximum ductility ratio and DI as EDPs, respectively.  It is important to note 
that the direct approach yields annual probabilities of  exceedance that are approximately 
twice as high across all damage states and for both considered EDPs when compared to 
the Poissonian model. In Figure 6.20, we show the ratio between the annual probability of  
exceedance obtained with IM*=AvgSa(0.2s-0.6s) and that obtained with IM*=Sa(0.2s) for 
all approaches considered. The differences between the two conditioning IMs are 
significantly more pronounced than in the Poissonian case. However,  it is noteworthy that 
these differences are considerably lower in Approaches 2 and 3 compared to those in 
Approach 1.  
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Figure 6.18. Annual probabilities of exceedance (poe) of the four DSs for the clustered seismicity case 

when maximum ductility ratio is used as the EDP. Results obtained using (a) Sa(0.2s) 
and (b) AvgSa(0.2s-0.6s). 

  
Figure 6.19. Annual probabilities of exceedance (poe) of the four DSs for the clustered seismicity case 

when DI is used as the EDP. Results obtained using (a) Sa(0.2s) and (b) AvgSa(0.2s-

0.6s). 

In Figure 6.21, we show the ratio between the annual probability of  exceedance obtained 
with the direct approach with those obtained with the three discussed methods. This figure 
refers to the case where the maximum ductility ratio is used as an EDP. Similarly, results 
for DI are shown in Figure 6.22. One can note that all considered approaches tend to 
overestimate the probabilities when compared to the benchmark, regardless of  the EDP 
and conditioning IM. Approach 1 consistently produces results farthest from the 
benchmark, supporting our observations in the Poissonian case. The closest approximation 
to the benchmark is achieved when DI is utilized in conjunction with Approach 2 and 
IM*=Sa(0.2s).  

When DI is used as an EDP and IM*=Sa(0.2s), Approach 2 yields lower annual 
probabilities of  exceedance compared to Approach 3-an outcome anticipated due to the 
higher median capacities of  fragility curves obtained with Approach 2 in this specific case. 
In other cases, however, the reasons for the difference between the results of  these two 
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methods are less straightforward, owing to the intricate interplay between median values 
and standard deviations (i.e., slopes) of  the fragility curves. However, one can notice that 
the differences in results obtained with these two approaches are not considerable.   

The results obtained with IM*=AvgSa(0.2s-0.6s) overall give us higher probabilities of  
exceedance in Approaches 2 and 3, compared to the case with IM*=Sa(0.2s). This was 
expected as there are small differences between the two conditioning IMs in the intact case 
and the reduction in capacity predicted with IM*=AvgSa(0.2s-0.6s) is higher, leading to 
higher annual probabilities of  exceedance.  

  
Figure 6.20. The ratio between the annual probability of exceeding given DS obtained when 

IM*=AvgSa(0.2s-0.6s) and when IM*=Sa(0.2s) for the case when EDP is (a) maximum 
ductility ratio and (b) DI. Illustrated results refer to the clustered seismicity case.  

  
Figure 6.21. The ratio between the annual probability of exceedance obtained with the direct approach 

and the annual probability of exceedance obtained with the three defined approaches. 
Results for maximum ductility ratio and (a) IM*=Sa(0.2s) and (b) IM*=AvgSa(0.2s-0.6s) 

are illustrated.  
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Figure 6.22. The ratio between the annual probability of exceedance obtained with the direct approach 

and the annual probability of exceedance obtained with the three defined approaches. 
Results for DI and (a) IM*=Sa(0.2s) and (b) IM*=AvgSa(0.2s-0.6s) are illustrated. 

Based on the results obtained, it is evident that Approaches 2 and 3, which incorporate 
hazard consistency in the selection of  mainshock records, outperform Approach 1, where 
IDA is employed without guaranteed hazard consistency. Additionally, our findings suggest 
that when utilizing Approach 2 for selecting aftershock ground motions, the stability of  
fragility curves is achieved more rapidly when AvgSa is employed as a conditioning IM and 
the DI is used as an EDP. However, given the complexity and computational demands of  
Approach 2, an alternative in the form of  Approach 3 proves viable. This alternative 
method combines hazard-consistent mainshock record selection with the outcomes of  
B2B-IDA, yielding results with only minor discrepancies compared to Approach 2.  

6.6 CONCLUSIONS  

In light of  the limited research on the development of  damage-dependent fragility curves 
and the significance of  aftershock record selection, our study addresses these gaps in the 
context of  clustered seismic risk assessment. We explore three distinct approaches for 
deriving damage-dependent fragility curves and we compare them on the basis of  annual 
probabilities of  exceeding different damage states.  

The investigation is conducted on a simple SDOF system characterized by the Modified 
Ibarra material model, with moderate ductility and a fundamental period of  0.2s. The site 
that we considered is Perugia, in Central Italy, where significant seismic sequences were 
observed in recent history. We first computed the hazard for our case study site following 
the event-based methodology. We considered two cases: (i) clustered seismicity case and (ii) 
mainshocks-only case. For the former, we utilized the Epidemic-Type-Aftershock 
Sequence (ETAS) model – a state-of-the-art approach for modeling clustered seismicity. 
To characterize the model we used the set of  parameters calibrated by Šipčić et al. [2022] 
(i.e., Section 2 of  this thesis) for Central Italy. In the latter, mainshock-only case, we 
employed the Poisson model, calibrated through the smoothed seismicity approach and the 
HORUS instrumental catalogue of  events [Lolli et al. 2020], declustered using Gardner and 
Knopoff  [1974] method. With the simulated catalogues of  events, Abrahamson et al. 
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[2014] GMPE and SHARE seismic source model [Woessner et al. 2015] we computed the 
hazard using two conditioning IMs, Sa(T1=0.2s),  commonly used metric, and AvgSa(0.2s-
0.6s) which might be a better choice in the context of  clustered seismicity where period 
elongation can occur due to the loss of  stiffness caused by the accumulation of  damage. 
We defined damage states through two EDPs: traditional displacement-based EDP 
(expressed in terms of  maximum ductility ratio) and  Modified Park and Ang DI that 
combines displacement with dissipated energy, calibrated using an extensive database of  
RC columns. 

We then described the three approaches for the derivation of  damage-dependent fragility 
curves: (i) Approach 1 which used B2B-IDA without any consideration of  hazard-
consistency in the ground motions used; (ii) Approach 2 where mainshock records are 
selected to be consistent with the hazard at the site using Conditional Spectrum (CS), while 
the aftershock ground motions are selected to be consistent with the selected mainshock 
ground motions following the methodology proposed by Papadopoulos et al. [2020] and 
(iii) Approach 3, which combines the mainshock record selection from Approach 2 with 
the results of  B2B-IDA to estimate the reduction in capacity due to pre-existing damage.  

With the damage-dependent fragility curves derived through these three methods, we 
calculated the annual probabilities of  exceeding defined damage states for both EDPs and 
conditioning IMs under consideration. We explored both mainshock-only and clustered 
seismicity cases. To establish a benchmark, we employed a direct analysis approach where 
we computed annual probabilities of  exceedance by selecting ground motions for each 
simulated rupture in the simulated stochastic catalogues. This approach circumvents the 
need to derive fragility curves but poses a substantial computational burden, feasible in our 
study due to the simplicity of  the SDOF system used.  

Our results showed that annual probabilities of  exceedance obtained with the direct 
approach in the clustered seismicity case are twice those obtained in the mainshock-only 
case. Additionally, we observed that, for both cases, results obtained with Approach 1 
deviated farthest from the benchmark, as expected, given the lack of  hazard consistency in 
this approach. Our findings suggest that when employing Approach 2, the stability of  
fragility curves is achieved more rapidly when AvgSa is used as a conditioning IM and DI 
as an EDP. However, it is worth noting that Approach 2, despite maintaining consistency 
between mainshock and aftershock ground motions, can be complex due to the 
requirement of  a seismic sequence generation model and a substantial number of  analyses 
needed for stable fragility estimates. In light of  this, we showed that Approach 3 may be a 
practical alternative, as the differences in results compared to Approach 2 are minor and 
the computational burden is much lower. 

It is crucial to highlight, however, that, for more comprehensive conclusions, similar 
analyses need to be conducted for different types of  structural systems, including both 
SDOF and MDOF systems, as well as for sites with different seismic characteristics.   
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7.CONCLUSIONS  

7.1 SUMMARY 

The main objective of  our work was to scrutinize some of  the common modeling decisions 
in seismic risk assessment, with emphasis on the significance of  including clustered 
seismicity.  

The conventional practice in seismic risk models is to neglect any event that is not the so-
called mainshock, namely the largest magnitude earthquake of  a cluster that occurred 
within a certain period in a certain area. This implies that the derivation of  the rate of  
occurrence of  future events is (mostly) based on the analysis of  “declustered” historical 
and instrumental seismicity catalogues. The various declustering techniques identify 
earthquake clusters and then keep the mainshocks, while all remaining events, whether 
“proper” foreshocks and aftershocks (namely those events that break part of  the same 
rupture of  the mainshock) or “triggered” events (namely those that break other segments 
of  the same fault or other adjacent faults) are disregarded. While this process enables 
analysts to use the relatively simple Poisson process for modeling the occurrence of  future 
events, numerous studies demonstrated that keeping just the mainshock events may result 
in underestimated hazard and risk estimates, highlighting the damaging potential of  all 
seismic events. 

In Chapter 2 of  this thesis, we estimated seismic hazard in two regions, namely Central 
Italy (Region 1) and Southern Italy (Region 2), accounting for all earthquake events 
regardless of  whether they are classified as mainshocks or not. To model seismic sequences 
we employed the Epidemic-Type-Aftershock-Sequence (ETAS) model, which is considered 
the state-of-the-art approach for generating realistic earthquake clusters. By adopting 
several Turing-style tests, we demonstrated that the ETAS model can represent the 
statistical features of  long-term historical seismicity in these two regions well. We compared 
the hazard estimates for sites of  Norcia and Perugia, in Central Italy, obtained with the 
ETAS model with those based on the Poissonian model that considers mainshocks only 
and the model that combines the Poissonian model for mainshocks and the Modified 
Omori law for modeling aftershocks (Omori model), which is more practical albeit less 
accurate approach than ETAS for clustered seismicity modeling. We showed that the 
Poisson model leads to hazard estimates that are significantly lower in some cases compared 
to ETAS. Furthermore, our comparison of  ETAS with the Omori model revealed that the 
former can better capture the temporal variation in seismic hazard both in quiet and active 
periods of  clustered seismicity. In essence, there is a price to pay if  one wants to use simpler 



Nevena Šipčić 

 

148 

approaches for clustered modeling: these results underscored the need to refine models 
describing spatiotemporal clustering for more accurate risk assessments. 

After having established that the ETAS model is indeed superior although more complex, 
the next obvious question is: can we calibrate the ETAS model in one region and use it also 
in other regions with the same tectonic environment? This question is addressed in the 
remaining part of  Chapter 2 and complemented in Chapter 3. 

Along these lines, we investigated whether the spatial and temporal characteristics of  
earthquake sequences generated by crustal faults are region-dependent or whether these 
characteristics share some commonality across regions. We found that there are differences 
in the parameters’ values defining the ETAS model in these two regions but these 
differences are not due to different characteristics of  the clustering in the two regions but 
rather to statistical issues due to limited sample sizes of  the data available.  By comparing 
the magnitude frequency distributions for large magnitude events of  ETAS simulated 
catalogs with the historical CPTI15 catalogue covering the period from 1717 to 2017, we 
showed that the modeling of  the sequences in Southern Italy is superior when the ETAS 
clustering parameters from Central Italy are used rather than those extracted from the 
sparse dataset of  clusters occurred in the past decades in Southern Italy itself. More 
specifically, there is a better agreement between simulated and observed frequency 
distributions when we utilized the more robust values of  the ETAS clustering parameters 
from Central Italy. These findings suggested that discrepancies in ETAS parameters’ values 
are likely a consequence of  data scarcity rather than intrinsic differences in earthquake 
sequence phenomena. 

Chapter 3 further reinforced our Chapter 2 findings as we applied the ETAS model 
calibrated with Central Italy data to represent seismic sequences in Croatia and Turkey. 
Again, through several Turing-style tests, we demonstrated that the ETAS model calibrated 
in this manner matches the observed seismicity better than the ETAS model calibrated 
using local data. Our results in Chapter 2 and Chapter 3 support the premise that ETAS 
parameters’ values from well-constrained regions, such as Central Italy, can be used in the 
same tectonic regions that either did not experience a sufficient number of  active seismic 
sequences during the period of  the earthquake instrumental catalogue or where the local 
instrumentation network is poor or missing. 

In addition to the potential underestimation of  seismic hazard due to disregarding non-
mainshock events, which was systematically addressed in Chapters 2 and 3, the 
conventional mainshock-only risk assessment approach implicitly assumes that events 
other than the mainshock of  the cluster do not contribute to causing additional structural 
damage and losses beyond those caused by the main event. This is clearly an 
oversimplification that is dispelled by the evidence from damage reconnaissance missions 
during active sequences.  The assumption of  structure always in the undamaged state is 
also not tenable even when only mainshocks from different clusters are considered, as is 
the case in the traditional approach. This assumption of  immediate repair after each event 
often does not align with reality: in many parts of  the world it takes decades before the 
building stock is fully repaired while in the meantime the damaged structures are left in a 
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heightened state of  vulnerability. Simply put, the accumulation of  damage due to different 
shocks is routinely disregarded. Even in the extremely rare cases when these models 
consider damage accumulation from multiple shocks, the engineering demand parameter 
(EDP) employed to describe damage estimation is usually peak-displacement-based. Such 
EDPs, which are not monotonically increasing, are poorly equipped to detect an increased 
level of  damage caused by multiple shocks, either in the same cluster or by other 
mainshocks. This caveat is even more serious when other shocks cause weaker ground 
motions, such as those from lower-magnitude events in the same cluster. Damage data 
collected after earthquakes in a sequence clearly shows the progression of  damage that this 
EDP cannot detect. Clearly, a more refined EDP is needed to address this problem. 

Chapter 4 addressed these limitations as we delved into the progression of  damage in 
reinforced concrete (RC) columns, that fail in flexure, shear, and flexure-shear modes. We 
concentrated our effort on RC buildings since they represent the largest fraction of  
structures in many parts of  the world and we focused on columns because they are the 
main structural elements whose damage contributes the most to the progressive loss of  
capacity. A database of  experimental tests on rectangular RC columns subjected to cyclic 
pushover was assembled and characteristic points (such as the cracking point, yield point, 
and ultimate point) were extracted from the force-displacement data. Leveraging 
experimental data, a modified Park and Ang damage index was calibrated. Our findings 
demonstrated that, while further validation with experimental data is warranted, the 
proposed EDP, which includes a peak displacement part and a dissipated energy part, 
identifies distinct damage states more effectively than previous peak displacement only 
EDPs. As a result, it emerges as a good candidate for developing fragility and vulnerability 
curves within the context of  clustered seismicity risk assessment. We then focused on the 
numerical modeling of  RC columns using the lumped plasticity approach and the Modified 
Ibarra material model. We explored the progression of  damage and capacity reduction 
under seismic sequences, considering the proposed energy-based damage index and the 
conventional peak displacement-based EDP. Results from modeling single-degree-of-
freedom systems (SDOFs) and a 3D model of  a bare RC frame structure using back-to-
back IDA indicated that the proposed damage index predicts a more significant reduction 
in capacity compared to maximum ductility, a result that is in better agreement with the 
data of  the laboratory tests at our disposal. 

In Chapter 5, our primary focus was on improving the applicability of  existing procedures 
for the development of  robust site-specific and structure-specific fragility curves for risk 
assessment purposes. The focus here is specifically on the link between the seismic hazard 
at the site of  interest and structural fragility. This link is ensured through a hazard-
consistent selection of  ground motions, for the implementation of  which, for example via 
using Conditional Spectrum (CS), a large pool of  strong ground motions is needed.  As 
this is hardly ever the case, in practical applications the suite of  records is usually augmented 
by scaling weaker ground motions. We took a deeper look at whether the practice of  scaling 
ground motions selected via CS may cause bias in the fragility estimates. For this purpose, 
we considered a site in Central Italy as a case study for hazard computation and ten 
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structures modeled as five SDOF systems with fundamental periods ranging from 0.2 to 
2.0 seconds and with 2 material models each. We defined two groups of  ground motions 
to select from–one with low scaling factors (LSF) and one with high scaling factors (HSF). 
Our findings indicated that when hazard consistency is maintained in the ground motion 
record selection, scaling ground motions does not lead to statistically significant differences 
in structural response estimates. This means that, although not encouraged, the practice of  
ground motion scaling can be tolerated because the scarcity of  naturally strong ground 
motions to choose from would cause a more significant negative impact on the accuracy 
of  the risk estimates. 

This is not the only practical issue that complicates the implementation of  risk assessment 
of  structures at a specific site. Another significant issue is related to managing the 
computational burden needed to achieve stable and accurate risk estimates. To do so, in 
real-life applications, one often needs to run many analyses especially when the analysts 
rely on complex numerical models of  structures. Therefore, in this part of  our work, we 
investigated how to reduce the number of  response analyses required to derive site-specific 
fragility curves using CS-based record selection and the Multiple-Stripe-Analysis approach.  
We showed that to achieve a good match to the target CS more than 7 records per stripe 
are recommended and, more importantly, to obtain stable response estimates, that is 
median and dispersion estimates of  the fragility curve, at least 11 (for the median) and 16 
(for the dispersion) ground motions are needed for a desired ±10% accuracy.  

Finally, given our objective of  including all earthquakes and the deterioration of  the 
structural integrity due to previous shocks in the risk assessment analysis, we moved further 
than fragility curves for intact structures and ventured into the derivation of  site- and 
building-specific damage-state-dependent fragility curves. Given the limited existing 
research on the subject and the importance of  aftershock record selection, in Chapter 6 
we investigated three distinct approaches for deriving damage-state-dependent fragility 
curves with different levels of  accuracy and complexity. We evaluated them by comparing 
the annual probabilities of  exceeding different damage states with the benchmark estimates 
obtained via the “direct approach” discussed below. Approach 1, which is the simplest and 
less accurate, utilizes back-to-back Incremental Dynamic Analysis (B2B-IDA) using a set 
of  strong ground motions extracted from the existing database without accounting for site 
hazard consistency. Approach 2, the most complex and arguably the most accurate, utilizes 
mainshock records that are selected to be consistent with the hazard at the site via CS, while 
the aftershock ground motions are selected to be consistent with the selected mainshock 
ground motions. Approach 3, a hybrid method of  the previous two of  intermediate 
complexity, combines the mainshock record selection from Approach 2 with the results of  
B2B-IDA to estimate the reduction in capacity due to pre-existing damage. The direct 
approach consists of  simulating many years of  clustered seismicity (via ETAS) and for each 
event of  magnitude, M, at a source-to-site distance, R, of  selecting ground motions of  
appropriate spectral content. The investigation was conducted on a simple SDOF system 
characterized by the Modified Ibarra material model, with moderate ductility and a 
fundamental period of  0.2s, located in Perugia, Central Italy. We defined the damage states 
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using the conventional displacement-based EDP and Damage Index, DI, proposed in 
Chapter 4. Our results showed that results obtained with Approach 1 deviate from the 
benchmark the most, due to the lack of  hazard consistency. The application of  Approach 
1 is, therefore, discouraged. Furthermore, we demonstrated that the differences in results 
obtained with Approach 2 and Approach 3 were not significant. This implies that, at least 
for the specific case considered, the choices made in aftershock record selection were not 
as critical as those related to mainshock record selection. In all cases using DI instead of  
conventional displacement-based EDP yielded superior results. Hence, in practical 
applications, we suggest using DI for defining damage states and Approach 3 of  
intermediate complexity for the derivation of  damage-state dependent fragility curves. 

 

7.2 FUTURE RESEARCH 

The research presented in this thesis emphasizes the significance of  incorporating clustered 
seismicity into seismic risk models and it addresses various critical issues related to seismic 
hazard, fragility curves’ development, and record selection for the goal of  site- and 
structure-specific risk assessment. Of  course, there remains plenty of  room for further 
improvement and investigation of  the discussed methodologies. Below are the key areas 
that we believe warrant additional research.  

• While we believe that the use of  the ETAS model is undoubtedly promising, 
several aspects of  it can be investigated more thoroughly. For example, fault 
geometry and anisotropic kernel for aftershock distribution, the time-varying 
magnitude of  completeness, potential inter-sequence variability of  the parameters, 
time-dependent background rate, and effect of  the temporal and spatial window 
are some of  the traits that deserve further investigation. 

• It is necessary to test if  the set of  ETAS parameters calibrated based on data in 
the region in Central Italy can be used in other crustal regions, expanding the study 
beyond Croatia and the region in Turkey, which were investigated in this thesis. 

• More efforts need to be made to gain insight into the accumulation of  damage 
during seismic sequences. It is necessary to have more experimental tests, including 
shake-table tests and data from instrumented buildings after each event in the 
sequence to further validate the proposed Damage Index. Furthermore, we 
focused only on the RC columns while the potential significance of  other 
components of  RC buildings, like infills and joints, needs to be assessed. More 
broadly, it is necessary to carry out additional analyses to determine the relevance 
of  damage accumulation in seismic risk assessment for different structures. 

• Given the scarcity (or absence) of  empirical tests, it would be useful to develop 
high-fidelity finite element models that can accurately predict damage in RC 
components, enabling the exploration of  different seismic sequences and the 
effects of  damage accumulation.  

• To reduce the the computational burden associated with running several response 
analyses in the Multiple-Stripe-Analysis framework for derivation of  fragility 
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curves, it should be investigated what is the optimal number of  stripes to run, 
balancing the accuracy and practicality. 

• When it comes to aftershock record selection it would be valuable to develop a 
framework that not only maintains the consistency between the mainshock and 
aftershock ground motions but also enforces hazard consistency of  the aftershock 
ground motions. Additionally, while it is clear that hazard-consistent mainshock 
record selection can have a significant effect on the fragility estimates it would be 
useful to perform additional analysis and investigate the importance of  aftershock 
hazard consistency.  

• To obtain stable estimates of  the damage-dependent fragility curves, one needs to 
run a substantial number of  analyses, an exercise that often requires a high 
computational burden. That said, more practical approaches for fragility analyses 
should be explored and developed, circumventing the need for an excessively high 
number of  back-to-back analyses.   
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APPENDICES 

APPENDIX A.  

A1. ETAS parameter estimation for different auxiliary windows 

Table A.1 shows the estimates of  the ETAS parameter values for different lengths of  the 
auxiliary window. One can see that there is no significant difference between these sets (the 
maximum difference is 8%). 

Table A.1. Estimated values of ETAS parameters for different lengths of the auxiliary window 

ETAS 
parameter 
estimates 

Region 1 Region 2 

2 years 5 years 10 years 2 years 5 years 10 years 

v 0.92 0.93 0.91 0.945 0.95 0.95 

A 
(events/day/km2) 

0.093 0.093 0.093 0.09 0.09 0.09 

c (days) 0.02 0.019 0.019 0.0054 0.0054 0.0051 

p 1.18 1.19 1.19 1.08 1.08 1.08 

d (km2) 0.9 0.86 0.849 1.66 1.62 1.62 

q 2 2.05 2.16 1.81 1.82 1.89 

γ (magnitude-1) 0.59 0.6 0.63 0.36 0.36 0.36 

 

A2. Additional Turing-style tests for ETAS simulated catalogs 

In addition to the tests presented in Section 2.5, we present here three additional tests 
where we compare the instrumental HORUS catalogue with the 500 stochastic catalogues 
simulated with the ETAS model, for the period of  1983-2020, conditioned on the two 
previous years of  seismicity.  

10-day seismicity rate 

Figure A.1 shows the cumulative fraction of  seismicity rates in 10-day windows in the 
instrumental HORUS catalogue and 500 ETAS-generated synthetic catalogues. Our goal 
here is not to compare the seismicity rates but rather to compare the distribution of  the 
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quiet (i.e., lower end of  the distribution) and active (i.e., higher end of  the distribution) 
periods. To that end, we normalized the seismicity rates with the mean rate. For both 
considered regions we see good agreement between the ETAS-generated catalogues and 
observed seismicity given by the HORUS catalogue.  

  

Figure A.1. Cumulative distribution of the normalized seismicity rate (Mw≥3) for 10-day windows for 
(a) Region 1 and (b) Region 2. The green dashed line refers to the instrumental HORUS 
catalogue, the solid grey line to the median of 500 ETAS-generated catalogues, and the 
shaded area represents the 5th and 95th percentiles of the ETAS simulations. 

 

Spatial distribution 

Figure A.2 shows the spatial distribution of  Mw≥3.5 earthquakes for instrumental 
HORUS and stochastic ETAS catalogs normalized with the total number of  events in 
the considered region. One can observe that, as expected, ETAS-generated maps are 
more diffuse, but that overall shape looks similar. 

To better understand the differences between the ETAS-generated catalogues and HORUS 
instrumental catalogue, we calculated the 2D interevent distance between every pair of  

events in each catalogue. Figure A.3 shows the cumulative fraction of  events within a 
certain distance. We can see that the observed events fall within the 5th and 95th  
percentiles of  the 500 stochastic ETAS catalogs. In Region 1, observed events have a 
steeper slope which indicates more loose spatial clustering, while in Region 2, this slope 
is lower, i.e., observed events have tighter spatial clustering. 
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Figure A.2. Number of events with Mw≥3.5 normalized by the total number of events in the considered 
region. HORUS instrumental catalogue in (a) Region 1 and (b) Region 2; the median of 

the 500 ETAS-generated catalogues in (c) Region 1 and (d) Region 2.  
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Figure A.3. The fraction of Mw≥3.5 event pairs within the given interevent distance for (a) Region 1 

and (b) Region 2. The green dashed line refers to the instrumental HORUS catalogue, the 
solid grey line to the median of 500 ETAS-generated catalogues, and the shaded area 
represents the 5th and 95th percentiles of the ETAS simulations.  

Aftershock productivity 

In order to compare the aftershock productivity between the HORUS instrumental 
catalogues and 500 stochastic ETAS-generated catalogues, we first identified the seismic 
sequences using Gardner and Knopoff  [1974] method. We considered only the events with 
magnitude Mw≥4. We then counted the number of  aftershocks in each identified sequence 
within different time windows: one day, five days, and ten days after the mainshock event. 
Even though there is a good agreement between empirical data and ETAS on average, we 
can see some differences on a sequence-to-sequence basis. Figure A.4 shows more 
sequence-to-sequence variability in the HORUS catalogue for all time windows considered.  
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Figure A.4. The fraction of Mw≥4.0 aftershocks in the identified sequences in Region 1 within (a) one 

day, (b) five days and (c) ten days after the mainshock event. Results for Region 2 are 
illustrated in (d), (e) and (f). The green dashed line refers to the instrumental HORUS 
catalogue, the solid grey line to the median of 500 ETAS-generated catalogues, and the 
shaded area represents the 5th and 95th percentiles of the ETAS simulations.  
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A3. Spatial distribution of  events in declustered catalogues  

Figure A.5 shows the spatial distribution of  the entire(non-declustered) catalogue and the 
distribution of  the catalogues declustered with the three different methods, namely 
Garnder and Knopoff  [1974] (GK), Zaliapin et al. [2008] (ZNN) and Reasenberg [1985] 
(R85). These values are derived by counting the number of  events within each grid cell and 
calculating the median across the 500 simulated catalogs. It is important to note that these 
values are normalized because our focus is on the spatial distribution rather than the actual 
rates. One can see that the spatial distribution of  the GK-declustered and ZNN-
declustered catalogue is very similar, while the R85-declustered catalogue maintains more 
events in the central part of  the considered region (i.e., Region 1).   

  

 

 
Figure A.5. Number of events with Mw≥3.5 normalized by the total number of events in the region for  

(a) non-declustered, (b) GK-declustered, (c) ZNN-declustered and (d) R85-declustered 
catalogue.  
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A4. Spatial distribution of  events in the Omori and ETAS models 

Figure A.6 shows the spatial distribution of  events obtained from the 500 ETAS and 
Omori stochastic catalogues (for different declustering methods). Similar to Figure A.5, we 
illustrate the normalized number of  events. The figures below show that the spatial 
distribution of  the ETAS and Omori-generated events is very similar for GK and ZNN 
cases, while some differences are observed for the R85 case as more events are kept in the 
central part of  the considered region (i.e., Region 1).  

 

  

 

 
Figure A.6. Number of events with Mw≥3.5 normalized by the total number of events in the region for  

(a) ETAS, (b) GK-Omori, (c) ZNN-Omori and (d) R85-Omori models. Median values are 
illustrated. 
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APPENDIX B.  

B1. Database of  RC columns  

To compile the experimental test database (referred to as DB in this thesis), we used two 
primary sources:  

a) Data gathered by the ACI committee 369, as described in more detail in 
Sivaramakrishnan [2010], as the primary source for the database;  

b) Database developed for the SERIES research project, described in more detail in 
Perus et al. [2014];  

Both databases extend from the Pacific Earthquake Engineering Research Center (PEER) 
Structural Database [Berry et al. 2004], supplemented with additional experiments 
extracted from various published reports. Only rectangular RC columns are included in the 
database and all specimens are subjected to the pseudo-static cyclic loading. Force-
displacement histories within the compiled database were obtained either directly from 
researchers or digitized from force-displacement plots in source documents. 

Given the diverse test configurations of  the columns (single cantilever, double-ended, 
double-curvature), force-displacement histories were standardized to correspond to the 
cantilever case for consistency. The compiled database includes a total of  370 specimens, 
with 54 from the SERIES and 316 from the ACI369 database. Of  these, 251 columns are 
flexure-dominated, 36 are shear-dominated, and the remaining 83 are flexure-shear 
dominated. Each column can be identified by the column name given by the authors who 
conducted the test or by the test number that we assigned to it. Additionally, for every 
column, we provide information about the source database (ACI369 or SERIES) and the 
reference of  the source document. Properties available include geometrical and material 
properties, reinforcing details, test configuration, applied axial load, and other relevant 
information, as listed and described in more detail in Table B.1. In addition to the properties 
outlined in Table B.1, two supplementary pieces of  information are included: 'Comments,' 
offering additional insights into the experiments if  necessary, and 'Data quality,' indicating 
the reliability of  available data. Instances where results from sectional analysis significantly 
diverged from experimental data led to the categorization of  data as unreliable. In some 
cases, columns were excluded due to inconsistencies between the provided force-
displacement data and the results in reference papers. 

Furthermore, as explained in Section  4.2, we extracted the values corresponding to the 
characteristic points on the force-displacement curve, such as the cracking point, yielding 
point, capping point, and point where ultimate displacement is reached. In addition to the 
values extracted from the data, we provide the values reported by the authors of  the 
experiments or extracted from source documents, where available. A description of  these 
parameters is given in Table B.2.  
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Table B.1. Description of the properties available in the compiled database.  

Configuration 
1 for single cantilever, 2 for 

double-ended, and 3 for double-
curvature 

Ec 

modulus of elasticity of 
concrete, calculated as 

4700√𝑓𝑐 [MPa] (ACI 318-08), 

where not given 

Failure 

1 for flexure, 2 for shear, and 3 
for a flexure-shear mode of 

failure. For the definition of the 
failures, see Berry and Eberhard 

(2003) 

fyl, ful 
yield and ultimate stress of 
longitudinal reinforcement 

P-delta 
effect of axial load on force-

displacement data, see Berry and 
Eberhard (2003) for details 

fyt, fut 
yield and ultimate stress of 

transverse reinforcement 

h, b, d 

height, width, and effective 
depth of the cross-section, 

calculated as the distance 
between the most compressive 

fiber of concrete to the center of 
gravity of tensile reinforcement 

dbl, dbt 
diameter of longitudinal and 

transverse reinforcement 

c 
concrete cover of the cross-

section 
Nb 

total number of longitudinal 
bars 

L, Ltop, Lbot 

L is the shear span of the 
specimen, while Ltop, Lbot are as 

explained in Berry and Eberhard 
[2003] 

nbw, nbh 

number of bars between the 
corner bars along the width 

and height of the cross-
section 

Lmea 
elevation at which lateral column 

displacement was measured 
s 

spacing of transverse 
reinforcement 

a/d aspect ratio ρl, ρt 
longitudinal and transverse 

reinforcement ratio 

P, v 
applied axial load and axial force 

ratio calculated as: 
𝑃

𝐴𝑔𝑓𝑐′
 ω 

volumetric transverse 
reinforcement ratio, 

calculated as the ratio of 
transverse reinforcement 

volume and the volume of 
concrete 

fc, fr 

compressive strength (at 28 days) 
and modulus of rupture of 

concrete. The latter is calculated 

as 0.622√𝑓𝑐 [MPa] (ACI 318-08), 

where not given 

Nv,pp, 

Nv,pl 

number of transverse shear 
bars in cross-section 

perpendicular and parallel to 
the load 
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Table B.2. Description of the parameters extracted from the available data 

dcr 
displacement at the cracking 
point, found using sectional 

analysis 
dscr 

displacement at the shear 
cracking 

Fy, dy 
force and displacement at the 

yielding point 
dlsy 

displacement at the longitudinal 
steel yielding  

dcap 
displacement corresponding to 

the maximum force 
dw,scr 

displacement at the widening of 
the shear cracking  

Fmax 

maximum force extracted from 
the available force-

displacement data (refers to the 
data where P-delta effects are 

removed) 

don,spall 
displacement at the onset of 

concrete spalling  

du 
maximum displacement 
recorded during the experiment 

dsig,spall 
displacement at the significant 

concrete spalling  

Fmax,has 

maximum force calculated 

following Haselton et al. 
[2007] 

dbuckl 
displacement at the point of bar 

buckling  

dfcr 
displacement at the flexural 

cracking  
dfract 

displacement at the fracture of 
the longitudinal bar 

dlcr 
displacement at the longitudinal 

cracking  
dax 

displacement at the axial capacity 
loss  

The assembled database is available for download at: NevenaSipcic (Nevena) (github.com). 
On this link, one can find four *.pkl data files, one with the properties of  the columns, one 
with the extracted values of  the characteristic points, one with the reported values of  the 
characteristic points (where available), and finally one with the force-displacement data for 
each experiment.  

B2. Shake table tests used for DI validation 

Table B.3 shows the estimated values of  DI and maximum drift(Δ) for the 23 shake-table 
tests that were used for validation. All considered columns fail in flexure-shear mode so 
the values reported in the table correspond to the damage states as defined in Table 4.4 
and Table 4.5, for DI and maximum drift, respectively. DI is calculated using Equation 
(4.10) and   value of  0.15. In the case of  DI for DS1 obtained values are very small 

positive values so, to simplify, we report them here as 0.01 in all cases. More details about 
these experiments can be found in Li [2012]. 
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Table B.3. Shake table tests used for validation with the estimated values of DI and maximum drift Δ 

(in %), for the three damage states. B and H are the width and height of the column’s cross-

section.  

Test Specimen name B[mm]xH[mm] DI1 DI2 DI3 Δ1 Δ2 Δ3 

1 NCREE-2009- HCFS-
B1 

200x200 0.01 0.35 1.07 1.2 1.73 2.74 

2 NCREE-2009-HCFS-C1 200x200 0.01 0.47 1.02 1.5 2.58 4.1 

3 NCREE-2009-MCFS-A1 200x200 0.01 0.26 0.98 1.0 2.02 3.6 

4 NCREE-2009-MCFS-B1 200x200 0.01 0.98 1.02 0.8 2.15 2.28 

5 NCREE-2009-MCFS-C1 200x200 0.01 0.94 1.04 1.0 2.15 2.5 

6 NCREE-2007-S1-C1 250x250 0.01 0.20 0.95 1.5 2.46 6.28 

7 NCREE-2007-S1-C2 250x250 0.01 0.28 1.08 0.7 1.43 3.35 

8 NCREE-2005-P2-C1 150x150 0.01 0.4 1.04 1.0 2.77 4.98 

9 NCREE-2005-P2-C2 150x150 0.01 0.26 0.95 1.0 2.66 4.98 

10 NCREE-2005-L-C1 150x150 0.01 0.32 0.85 1.0 3.64 8.48 

11 NCREE-2005-L-C2 150x150 0.01 0.2 0.74 1.0 2.74 8.5 

12 
Shin 2005-II-1W 152.5x152.5 

0.01 
0.16 0.76 

1.12 
2.26 4.26 

13 
Shin 2005-II-2W 152.5x152.5 

0.01 
0.25 0.65 

1.3 
2.79 4.88 

14 
Shin 2005-II-7W 152.5x152.5 

0.01 
0.30 0.64 

1.23 
2.52 3.4 

15 
Shin 2005-II-8W 152.5x152.5 

0.01 
0.17 0.49 

1.3 
2.15 3.63 

16 
Shin 2005-III-4E 152.5x152.5 

0.01 
0.35 0.83 

1.8 
2.63 3.83 

17 
Shin 2005-III-4W 152.5x152.5 

0.01 
0.18 0.82 

1.13 
2.03 3.83 

18 
Shin 2005-III-6E 152.5x152.5 

0.01 
0.01 0.69 

1.2 
1.75 3.35 

19 
Shin 2005-III-6W 152.5x152.5 

0.01 
0.3 0.67 

1.18 
2.73 4.28 

20 
Shin 2005-III-10E 152.5x152.5 

0.01 
0.15 0.87 

1.21 
1.85 3.16 

21 
Shin 2005-III-10W 152.5x152.5 

0.01 
0.23 0.86 

1.2 
1.81 2.48 

22 Elwood 2002-S1 230x230 0.01 0.23 1.05 1.0 2.35 6.07 

23 Elwood 2002-S2 230x230 0.01 0.24 0.95 1.0 1.58 3.82 
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B3. MODIMKPeakOriented02 material model: OpenSees parameters 

Table B.4 shows the parameters used to define the MODIMKPeakOriented02 material model 
and the calculation of  these parameters in our particular case.  

Table B.4. OpenSees parameters and equations used to define MODIMKPeakOriented02 material 
model  

Parameter Description Calculation  

$matTag Integer tag identifying material  integer 

$K0 Elastic stiffness My /θy 

$as_Plus Strain hardening ratio for positive loading direction. pcyyc MM  /)1/( −  

$as_Neg Strain hardening ratio for negative loading direction. pcyyc MM  /)1/( −  

$My_Plus Yield moment for positive loading direction. Sectional analysis 

$My_Neg Yield moment for negative loading direction. Sectional analysis 

$Lamda_S Cyclic degradation parameter for strength degradation.  y  

$Lamda_C Cyclic degradation parameter for post-capping stiffness 
degradation. 

 y  

$Lamda_K Cyclic degradation parameter for reloading stiffness 
degradation. 

 y  

$Lamda_A Cyclic degradation parameter for unloading stiffness 
degradation. 

 y  

$c_S Rate of strength degradation. 1.0 

$c_C Rate of post-capping stiffness degradation. 1.0 
$c_K Rate of reloading stiffness degradation. 1.0 
$c_A Rate of unloading stiffness degradation. 1.0 

$theta_p_Plus 
Pre-capping rotation for positive loading direction. plc ,  

$theta_p_Neg 
Pre-capping rotation for negative loading direction. plc ,  

$theta_pc_Plus 
Post-capping rotation in the positive direction. pc  

$theta_pc_Neg 
Post-capping rotation in the negative direction. pc  

$Res_Pos 
Residual strength ratio for positive loading direction. 0 

$Res_Neg 
Residual strength ratio for negative loading direction. 0 

$theta_u_Plus 
Ultimate rotation capacity for positive loading direction. pcplcy  ++ ,  

$theta_u_Neg Ultimate rotation capacity for negative loading direction. pcplcy  ++ ,  

$D_Plus Rate of cyclic deterioration in the positive loading direction. 
For symmetric hysteretic response use 1.0. 

1.0 

$D_Neg Rate of cyclic deterioration in the negative loading direction. 
For symmetric hysteretic response use 1.0. 

1.0 

$nFactor Elastic stiffness amplification factor  10 
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APPENDIX C.  

C1. Disaggregation results for Perugia 

Table C.1. shows the results of  the seismic hazard disaggregation in terms of  the mean 
magnitude M and distance R for the site of  Perugia. Analyses are performed using 
OpenQuake software, a magnitude bin width of  0.5 and a distance bin width of  10km. 
Results for ten intensity levels corresponding to  Table 5.1 are shown, for six different 
conditioning IMs.  

Table C.1. The mean magnitude and distance (in km) for Perugia, obtained from seismic hazard 
disaggregation, for ten intensity levels (IMLs). Results for six different IMs are shown.  

 
Magnitude (M) Distance (R[km]) 

IML 
Sa 

(0.2) 
Sa 

(0.5) 
Sa 

(1.0) 
Sa 

(1.5) 
Sa 

(2.0) 
AvgSa 
(0.2-2) 

Sa 
(0.2) 

Sa 
(0.5) 

Sa 
(1.0) 

Sa 
(1.5) 

Sa 
(2.0) 

AvgSa 
(0.2-2) 

1 5.8 6.0 6.2 6.2 6.3 6.2 24.0 31.4 40.3 45.7 50.0 37.8 

2 5.9 6.1 6.3 6.3 6.4 6.3 20.9 27.0 34.5 39.2 43.2 31.9 

3 6.1 6.3 6.4 6.5 6.5 6.4 17.5 22.0 27.8 31.6 35.0 25.1 

4 6.3 6.5 6.6 6.6 6.7 6.6 11.9 14.0 17.2 19.3 21.5 15.0 

5 6.5 6.6 6.7 6.7 6.8 6.7 9.3 10.6 12.7 14.0 15.5 10.9 

6 6.6 6.7 6.7 6.8 6.8 6.8 7.0 7.6 8.8 9.5 10.4 7.6 

7 6.7 6.7 6.8 6.8 6.9 6.8 6.6 7.0 8.0 8.6 9.3 7.0 

8 6.7 6.8 6.8 6.8 6.9 6.9 6.0 6.4 7.2 7.6 8.1 6.3 

9 6.8 6.8 6.8 6.9 6.9 6.9 5.6 5.8 6.4 6.7 7.0 5.8 

10 6.8 6.9 6.9 6.9 7.0 7.0 5.2 5.2 5.5 5.6 5.8 5.2 
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C2. Distribution of  IMs for IM*=Sa(0.5s) and IM*=Sa(1.5s) 

Figure C.1 compares the metrics of  the distributions of  the IMs using box plots, for the 
three conditioning periods of  0.5 and 1.5 s. In these figures, the boundaries of  each box 
correspond to the lower and upper quartiles, the line within the box corresponds to the 
median and the whiskers extend to the minimum and maximum observed values.  

 

  
Figure C.1. Metrics of the distributions of the different IMs: PGA, Ds5-75, CAV, AI, and SI from the 

first to the last row, respectively. Results for the sets of records selected using the IM*=(a) 
Sa(0.5s), (b) Sa(1.5s). 
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C3. Structural response estimates: additional results 

 

Figure C.2. Response estimates showing the data points, the median and 5th and 95th percentiles of 
the data in terms of ductility ratio (a, b), and maximum relative acceleration (c, d). Results 
for the SDOF with T1 of 0.5 s(a and c) and 1.5 s(b and d) are illustrated. These results 

pertain to SDOFs with pinching material model. 

  

Figure C.3. Response estimates showing the data points, the median and 5th and 95th percentiles of 
the data in terms of ductility ratio (a, b), and maximum relative acceleration (c, d). Results 
for the SDOF with T1 of 0.5 s(a and c) and 1.5 s(b and d) are illustrated. These results 
pertain to SDOFs with elastic with hardening material model. 
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Figure C.4. Response estimates obtained from MSA showing the data points, the median and 5th and 

95th percentiles of the data in terms of maximum velocity (a, b, c), and dissipated energy 
(d, e, f). Results for the SDOF with T1 of 0.2s(a and d), 1.0s(b and e) and 2.0(c and f) are 

illustrated. These results pertain to SDOFs with pinching material model. 

 
Figure C.5. Response estimates obtained from MSA showing the data points, the median (solid line) 

and 5th and 95th percentiles (dashed lines) of the data in terms of maximum velocity (a, b, 
c), and dissipated energy (d, e, f) based on the LSF and HSF sets of ground motions. 
Results for the SDOF with T1 of 0.2s(a and d), 1.0s(b and e) and 2.0(c and f) are illustrated. 

These results pertain to SDOFs with elastic with hardening material model. 
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Figure C.6. Response estimates obtained from MSA showing the data points, the median and 5th and 
95th percentiles of the data in terms of maximum velocity (a, b), and dissipated energy (c, 
d). Results for the SDOF with T1 of 0.5s(a and c) and 1.5 s(b and d) are illustrated. These 

results pertain to SDOFs with pinching material model. 

 

Figure C.7. Response estimates obtained from MSA showing the data points, the median and 5th and 
95th percentiles of the data in terms of maximum velocity (a, b), and dissipated energy (c, 
d). Results for the SDOF with T1 of 0.5s(a and c) and 1.5s(b and d) are illustrated. These 
results pertain to SDOFs with elastic with hardening material model. 

 


