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ABSTRACT 

Viticulture is a crucial sector in Italy's economy, largely dependent on weather and climate. 
Grapevines, as perennial plants, may be productive for maximum fifty years, a time scale 
for which climate variability can be relevant. In this respect, global climate warming 
represents an additional challenge for this cultivation, and Italy, being a climatic hotspot, is 
expected to experience particularly severe effects associated with climate change.  

This work presents and tests two methodologies for investigating the impact of climate 
variability on wine grape productivity. The first methodology uses bioclimatic indices 
calculated on fixed calendar dates and is applied at both regional and local scales. The 
second methodology employs phenological and water balance models to compute 
ecoclimatic indices based on phenological stages of wine grape at the local scale.  

For the first method, bioclimatic indices are computed using temperature and precipitation 
observations from the E-OBS dataset, the atmospheric reanalysis SPHERA, and the 
climate simulations from the CNRM-ALADIN regional climate model and the CNRM-
AROME high-resolution convection-permitting model. These indices are then correlated 
with wine grape productivity data. The regional-scale analysis is based on productivity data 
provided by the Italian National Institute of Statistics from 1980 to 2019 (a 40-year period). 
The productivity data at the local scale are provided by two private Italian wine consortia, 
namely the Consorzio Tutela del Franciacorta in the north of Italy and the Consorzio Vino 
Nobile di Montepulciano in central Italy, over the time periods 1997-2019 (23 years) and 
1989-2019 (31 years) respectively. 

After conducting a single correlation analysis between bioclimatic indices and productivity, 
a multi-regressive model is constructed. The comparison between single and multiple 
regression approach shows that, in most cases for the area and period under consideration, 
a linear combination of bioclimatic indices increases the fraction of productivity variability 
explained by the statistical model. The analysis at local scale, performed using SPHERA, 
CNRM-ALADIN and CNRM-AROME, improves the results at regional scale, showing 
statistical significance in regions where the model was not able to explain the yield 
variability, despite using a shorter time series.  

The second methodology ensures a more accurate representation of the plants' 
development, being based on ecoclimatic indices derived by phenological and water 
balance models driven by climate observations from E-OBS. A sensitivity analysis is 
performed on the phenological model to adapt it to the case study. The study correlates 



 

ecoclimatic indices with wine grape productivity provided by Italian wine consortia at a 
local scale. The significant correlation obtained in most cases confirms the positive or 
negative influence of ecoclimatic indices on productivity as expected based on previous 
studies. A multi-regressive model is then constructed to identify the indices that have the 
greatest impact on productivity variability. The selected ecoclimatic indices are proven to 
be good candidates for yield modelling. This methodology can be applied to future climate 
projections and used to investigate environmental changes and their potential impact on 
grape yield in the future. 
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1. INTRODUCTION 

1.1 STATE OF THE ART AND MOTIVATION 

Climate plays a central role in viticulture, influencing grape productivity and wine typicity 
(Jones, 2018; Spielmann & Charters, 2013). The development of the vine is influenced by 
various environmental factors including temperature, rainfall, and solar radiation. The expected 
changes in climate variability may pose a challenge to the wine industry since the productivity 
of a vineyard may last up to fifty years. The climate, and therefore climate change, affects grape 
production, but also the composition and quality of wine, potentially altering the geography of 
high-quality wine production (Van Leeuwen et al., 2024).  Understanding the relationship 
between climate and viticulture is thus essential to assess the potential impact of climate change 
on grape productivity and to provide winegrowers with the knowledge to implement efficient 
adaptation strategies (Battaglini et al., 2009). The main driver of phenology is temperature, 
which affects the growing cycle (White et al., 2006). Excessively high temperatures can 
adversely affect productivity and quality (Drappier et al., 2019; Jackson & Lombard, 1993). 
Higher temperatures advance phenology and could shift flowering to a cooler, less favourable 
season, reducing yields (Sadras & Moran, 2013). The combination of rising temperatures and 
reduced rainfall will lead to a serious risk of drought. Water deficits have a negative impact on 
production. In fact, under drought conditions, the plant produces fewer bunches per shoot 
(Guilpart et al., 2014).  

In 2022, Italy was the world's leading wine producer, with almost 50 million hl produced (49.8 
million hl, according to International Organisation of Vine and Wine (OIV) statistics 2022), 
and the second-largest wine exporter, with a value of 7.8 billion euros and 21.9 million hl 
exported (OIV, 2023). Italy is also a climate change hotspot, i.e. a region where the impacts of 
climate change on the environment and human activities are expected to be particularly severe, 
and, despite the availability of adaptation strategies, rapid changes in climate conditions pose a 
significant risk to the wine sector (Mozell & Thachn, 2014).  

Many studies have investigated the relationship between climate and wine grape, using climate 
observations, climate simulations and crop models (Ferrise et al., 2016; Fraga, 2019; Jones et 
al., 2012; Moriondo et al., 2011). These studies can be divided in two main categories. The first 
one includes studies using crop-specific bioclimatic indices, i.e. based on climatic variables for 
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a particular season or time interval and investigates how those indicators have changed in the 
past and/or are expected to change in the future (Adão et al., 2023; Badr et al., 2018; Gaitán & 
Pino-Otín, 2023; Gopar-Merino et al., 2015; Piña-Rey et al., 2020). The second category focuses 
on the phenological development of the plant, considering how the time of occurrence of a 
particular phenological phase changes over time. This kind of study uses crop models (i.e. 
phenological and water balance models) to compute indices tailored to the phenological 
development of the specific plant (hereafter: ecoclimatic indices) (N. Brisson et al., 2003; Buis 
et al., 2015; Doutreloup et al., 2022; Moriondo et al., 2011; Zito et al., 2023). 

Both categories mostly focus on the suitability of a region to harvest wine grape or on the 
potential shift in the quality of the wine produced (Dal Monte et al., 2019; Jones et al., 2005; 
Van Leeuwen & Darriet, 2016), both being key assets for the wine industry, especially in fine-
wine regions. On the other hand, research on the impact of climate variability on wine grape 
productivity is still very limited. This work aims to reduce this gap by analysing the relationship 
between climate variability and wine grape productivity in Italy, both at the regional and local 
scale, using the two above-described methodologies.  

1.2 OBJECTIVES 

The aim of this thesis is to offer fresh insights into the relationship between recorded wine 
grape productivity and the climate variability either observed or simulated with climate models 
over Italy.  The purpose is to propose and evaluate a new methodological framework for the 
study of climate impact on wine grape productivity. This research develops two methodologies 
based on bioclimatic and ecoclimatic indices, calculated using climatic observations, reanalysis 
products, and model simulations, to explain the variability in wine grape productivity at both 
regional and local scale, NUTS 2 (Nomenclature of Territorial Units for Statistics) and NUTS 
3, respectively.  

The proposed methodological framework can be applied to wine growing regions in different 
geographical areas and periods, also opening the opportunity to investigate changes in wine 
productivity even under future climate scenarios. Furthermore, this work could provide 
knowledge to support winegrowers in enhancing their level of adaptability and sustainability, 
as they express the need for more information in this respect (Battaglini et al., 2009). It also 
may serve as a foundation for implementing new climatic services or parametric insurance 
models. 

To achieve this aim, several steps are designed and implemented as follow: 
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The first chapter presents a new application of bioclimatic indices to directly explain the 
variability in wine grape productivity at the NUTS 2 scale in Italy. Bioclimatic indices, 
recommended by the International Organisation of Vine and Wine (OIV, 2012), are computed 
using observed temperature and precipitation from the E-OBS dataset at a spatial resolution 
of 0.1° in latitude and longitude (~11.1 km; Photiadou et al., 2017). The computed indices are 
then correlated with grape productivity data provided by Italian National Institute of Statistics 
(ISTAT) from 1980 to 2019. Single and multi-regressive approaches are used to investigate 
both long-term and interannual variability. The multiple regression approach is used to account 
for the interplay of the bioclimatic indices in explaining the total productivity variability. 

In the second chapter, the previously developed methodology is applied at the local scale, using 
climate models in addition to observations. The climate model used are a regional climate 
model (RCM), and a convection-permitting model (CPM). CPMs are km-scale climate models 
that can explicitly resolve convection (Fosser et al., 2020; Kendon et al., 2021) and their use in 
impact studies is increasing due to their better representation of extreme precipitation events 
or fine-scale phenomena (Chapman et al., 2020, 2023; Slater et al., 2022).  In particular, the 
potential benefits of using a CPM, instead of a RCM, to represent productivity variability at the 
local scale is assessed in this chapter. Bioclimatic indices are calculated using climate data from 
CNRM-AROME (CPM) (Caillaud et al., 2021), CNRM-ALADIN (RCM) (Nabat et al., 2020), 
SPHERA reanalysis (Cerenzia et al., 2022), and the E-OBS dataset. CPM and RCM simulations 
are provided by Centre National de Recherches Météorologiques (CNRM), while SPHERA 
reanalysis is a product of ARPAE-SIMC (the hydro-meteo-climate service of Emilia Romagna 
region, Italy). The CPM simulation is validated against the SPHERA reanalysis, which serves 
as reference for this study, and compared to the RCM simulation. The validation of CPM is 
also performed against E-OBS dataset because, despite some previously documented 
limitations (Hofstra et al., 2009; Kyselý & Plavcová, 2010),  it is commonly used for model 
validation. Consorzio Tutela del Franciacorta (FRA) and Consorzio del Vino Nobile di 
Montepulciano (MON) have provided data on wine grape productivity, which are then 
correlated with the bioclimatic indices over the period 2000-2018. Both single and multiple 
regressions are used to investigate whether a linear combination of bioclimatic indices increases 
the proportion of total productivity variability explained. This chapter highlights the 
significance of addressing the problem at various scales and introduces climate models as a tool 
to investigate it. This supports the generalizability of the presented methodology. 

Bioclimatic indices are a valuable tool for examining the impact of climate variability on grape 
productivity. However, they have limitations as they are based on fixed calendar dates that may 
change with a changing climate. To address this limitation, Chapter 3 presents a different 
approach based on ecoclimatic indices and discusses their ability in explaining the variability of 
wine grape productivity at local scale. The ecoclimatic indices differ from the previously used 
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bioclimatic indices as they are calculated based on specific phenological phases rather than 
fixed calendar dates (Caubel et al., 2015; Zito et al., 2023). Validated phonological and water 
balance models are used to identify critical periods, which can be adjusted to variety and canopy 
geometry information. The indices are computed using E-OBS climate variables into the 
phenological and water balance model and are then correlated with grape productivity data 
provided by FRA and MON consortia. A multi-regression model is used to identify the linear 
combination of indices that maximises the explained productivity variability.  

The methodology applied in the previous chapters made use of both bioclimatic and 
ecoclimatic indices that can serve as a basis for climatic services for the wine sector, such as 
the one implemented by the European project MED-GOLD. Therefore, the fourth and last 
chapter presents the evaluation of an already implemented climatic service to show a possible 
application of the indices such as the ones discussed above. The work presented is based on a 
training given by MED-GOLD experts, during which the author had access to the dashboard 
developed within the project on the Portuguese and Hiberian peninsulas. 

The final chapter presents a case study on the MED-GOLD climate service for the wine 
industry (Dell’Aquila, 2020; Dell’Aquila et al., 2023) applied in the Douro region of Portugal. 
The availability of data and the interest expressed by the experts involved in the project 
determined the choice of regions. The study evaluates the performance of the seasonal forecast 
for specific indicators used to prevent fungus disease and sunburn in grapes (Chou et al., 2023). 
This type of climate service for viticulturists is crucial to prevent losses. Previous studies on 
the climate service market, such as Vaughan et al., (2019, 2017) and Cortekar et al., (2020), have 
not addressed the issue of access fees to climate services. This chapter presents various 
scenarios that link the reliability of seasonal forecasts to the decision-making process of the 
user. The scenarios are based on the hypothetical behaviour of farmers: one relies solely on the 
climate service, another does not consider the service, and a third combines the information 
from the service with their own experience. Based on these scenarios the study proposes an 
annual service fee, which is linked on the accuracy of seasonal forecasts and the potential 
savings and losses of grape growers with micro holdings (≤ 1 ha). Although the bioclimatic 
index and region of interest used in this chapter differ from those previously discussed, this 
section demonstrates a practical application of the scientific principles mentioned earlier. It 
also offers an economic assessment of a climatic service, which enhances the completeness of 
the work. 

The studies presented in chapter one and four have been published as a peer-reviewed papers 
(Massano et al., 2023; and Nam et al., 2024), one manuscript extracted from chapter two 
(Massano, Fosser, et al., 2024) has been submitted for the publication and one extracted from 
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chapter three (Massano, Bois, et al., 2024) will be shortly submitted to international scientific 
journals. 
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2.ASSESSMENT OF CLIMATE IMPACT ON GRAPE 
PRODUCTIVITY: A NEW APPLICATION FOR BIOCLIMATIC 
INDICES IN ITALY  

Abstract  

Italy is a world leader for viticulture and wine business with an export valued 7 billion of euros 
in 2021, and wine being the second most exported product within the national agri-food sector. 
However, these figures might be threatened by climate change and winegrowers call for more 
reliable local information on future impacts of climate change on viticulture. 

The study aims to understand the impact of climate on wine production in Italy using grape 
productivity data and bioclimatic indices. Using temperature and precipitation observations 
from the E-OBS gridded dataset, a set of bioclimatic indices recommended by the International 
Organisation of Vine and Wine guidelines is calculated and correlated with grape productivity 
data at the regional scale (Nomenclature of territorial units for statistics, NUTS, level 2) over 
the last 39 years (1980-2019). The study investigates how both long-term change and natural 
variability of the bioclimatic indices impacted on grape productivity. Both single and multi-
regression approaches are applied to assess the portion of grape productivity variability 
explained by the selected indices.When the single-regression approach is applied, the 
correlations between bioclimatic indices and grape productivity explain up to the 45% of total 
production variability, however they are statistically significant only in few regions. Conversely, 
the multi-regression approach improves the proportion of variance explained and gives 
statistically significative results in region where the single regression is not statically significant. 
The multi-regressive approach shows the added value of considering the interplay of different 
bioclimatic indices in explaining the overall variability of productivity. The possibility of using 
bioclimatic indicators as a proxy for grape productivity provides a simple tool that grape 
growers, wine consortia and policy makers can use to adapt to future climate. 
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2.1 INTRODUCTION 

Viticulture is tightly dependent on weather and climate. Over the centuries, winegrowers have 
adapted to climatic conditions and found the best practices to successfully grow vines in 
different geographical areas. However, this equilibrium between climate and viticulture could 
be challenged by climate change (Palliotti et al., 2018). As highlighted by Monteleone et al., 
2022, climate change has been considered in different studies in the assessment of crop 
vulnerability. The impact of climate variability and change on grapes has been the subject of 
many studies, showing how rising temperatures and changing rainfall patterns can affect grape 
growth (Droulia & Charalampopoulos, 2021; Jones, 2003, 2007; Lena et al., 2012; Schultz, 
2016). Temperature is the main driver for phenology (De Cortázar-Atauri et al., 2017) and a 
warmer climate may lead to an anticipation of the phenological phases and to a shortening of 
the growing cycle, which influence the quality of the harvest (Bock et al., 2013; G. C. Koufos 
et al., 2022). A change in the life cycle timing also increases frost risk, as budburst occurs earlier, 
when frost events are still likely to occur (Mosedale et al., 2015; Sgubin et al., 2018) while 
variations in the precipitation pattern can increase the exposure to pest and diseases (Bois et 
al., 2017).  Furthermore, important shifts in viticulture suitability are expected in many 
traditional wine-producing regions, including Italy, that can lead to a decline in production 
(Hannah et al., 2013; Moriondo et al., 2013; Sgubin et al., 2023). 

In Italy, wine represents the second most important exported product within the national agri-
food sector, valued 7 billion euros in 2021, growing by 12.4% compared to 2020 and 51.5% 
compared to 2012 (Del Bravo et al., 2022). With almost 10% of the world area devoted to wine 
production, Italy has been in 2022 the first wine producer in the world (49.8 million hectolitres), 
followed by France (45.6 Mio hl) and Spain (35.7 Mio hl) (OIV, 2023). 
Italian viticulture is a complex mosaic of appellation laws, driven by different climatic and 
environmental conditions and characterised by different vineyard management and resource 
optimisation strategies(Miglietta & Morrone, 2018). From a climatic point of view, Italy is 
classified as hot summer Mediterranean climate (Koppen-Geiger classification by Beck et al., 
2018), with dry summers and wet winters, but the southwest is characterised by dryer 
conditions, especially inland, while the northeast is wetter and the complex orography can be 
characterised by very cold conditions (Fratianni & Acquaotta, 2017). Consequently, each region 
implements different cultivation styles, selected according to the needs of the area and the local 
climate. Thanks to this heterogeneity, Italy exhibits a high cultivar diversity hosting the top 80 
most cultivated grape varieties (OIV, 2017). For premium wines in particular, the link between 
the type of wine produced and the home territory is of paramount importance, in terms of the 
grape variety selected, the soil property and viticultural practices used. This link is reflected in 
detailed specifications for vintage management and winemaking techniques (Gori & Alampi 
Sottini, 2014; Meloni et al., 2019). 
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Being part of the Mediterranean region, Italy is a climate hotspot, i.e., a region where the impact 
of ongoing and future climate change on the environment and human activities are expected 
to be particularly severe (Giorgi, 2006; Lionello & Scarascia, 2018; Tuel & Eltahir, 2020). In 
the past 20 years, European winegrowers already experienced the effect of higher temperatures 
and more frequent drought conditions on their activity. Those effects include variation in 
harvestable quantities, increase of pests and diseases, changes in phenology, increase in frost 
risk (Di Carlo et al., 2019; Van Leeuwen et al., 2019). In Italy the main effects reported are a 
decrease in quantity, an increase in diseases but also a higher wine quality (Battaglini et al., 
2009). However, other factors, besides climate variability and change, can impact on wine 
production and productivity. The market can influence the choice of cultivars towards more 
profitable varieties, while viticultural practice can play a major role in ensuring a steady yield 
through the years (Basso, 2019; Vinatier & Arnaiz, 2018). The most common adaptation 
strategies implemented to cope with the adverse effects of climate, are changes in rootstock, in 
pruning techniques and/or soil management that together with irrigation are useful against 
sunburn and heatwaves (Fraga, 2019; Keller, 2010a, 2010b). Also, the selection of new varieties 
can improve the drought resistance (Hayman & Longbottom, 2012), however the application 
of such a strategy in Italy would require a modification of the denomination law. Despite the 
possible adaptation strategies, a rapid change in climate conditions could place a strong risk on 
the sector especially in Italy, and winegrowers are calling for more reliable local information on 
future impacts of climate change on viticulture (Battaglini et al., 2009; Moriondo et al., 2011; 
Mozell & Thachn, 2014). Several approaches have been proposed to answer their call (Ferrise 
et al., 2016; Sgubin et al., 2023). The most common is based on bioclimatic indices developed 
from climate variables for specific plants and crops to effectively describe the plant-climate 
interactions (Santillán et al., 2020; J. A. Santos et al., 2020; Teslić et al., 2018). The International 
Organisation of Vine and Wine (OIV) suggests a range of bioclimatic indices tailored to 
viticulture, based on temperature and heat accumulation (OIV, 2012, 2015). In addition, Badr 
et al. (2018), considering the work of (Blanco-Ward et al., 2007), suggest the use of 
precipitation-based. Bioclimatic indices are often used to assess a region’s suitability for 
viticulture or for zoning purposes. (Cardell et al., 2019; Irimia et al., 2013; G. C. Koufos et al., 
2018; Mavromatis et al., 2022; J. A. Santos et al., 2012), but also used in relation with phenology 
and alcohol concentration (Dalla Marta et al., 2010; Teslić et al., 2018).  To assess the impact 
on climate change and variability, bioclimatic indices are often analysed in correlation with 
specific phenological phases or harvest dates (G. Koufos et al., 2014). However, these types of 
datasets do not give indication on productivity. Alternatively phenological or crop models (e.g. 
Andreoli et al., 2019; Bonfante et al., 2017; Brisson et al., 2003) can be used to determine the 
wine production from climate variables, but their calibration requires a huge amount of input 
data (atmospheric variables minimum and  maximum  temperatures,  radiation  and  rain-fall, 
soil hydrology and composition, variety characteristics,  vineyard management information etc. 
) and thus the scalability of their results is limited. Fraga et al., (2012) and (J. A. Santos et al., 
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2011) proposed a different approach developing complex statistical tools to estimates yield 
under present and future climate conditions for a small area in the Douro region. 

This study aims to bring new insight on the link between climate and grape production 
developing a simple statistical model that could support winegrowers in adapting to climate 
change. The present work focuses on Italy, at NUTS2 (Nomenclature of territorial units for 
statistics, level 2) scale, and specifically links grape productivity data (q/ha) for wine production 
with wine-relevant bioclimatic indices. To the best of the author's knowledge of the existing 
literature, this is a new application of bioclimatic indices and offers a viable alternative to the 
use of phenological information or harvest dates to assess the impact of climate variability and 
change on viticulture.  Single and multi-regressive approaches are used to determine to which 
extent bioclimatic indices can explain the changes in Italian grape productivity over time at 
regional scale. The investigation is conducted on the raw data and on the high frequency 
component of the time series (i.e., interannual), to assess the impact of both climatic trends 
and interannual climate variability. The proposed methodology can be easily applied in other 
countries and used to predict changes in wine productivity under future climate scenarios. In 
addition, it can represent the base for developing new climatic services and parametric 
insurance models (Cesarini et al., 2021). 

2.2 DATA AND METHODS 

2.2.1 Grape productivity data 

The Italian National Institute of Statistics (ISTAT) collects yield data for several agricultural 
activities in freely available yearly publications; For the wine industry, ISTAT provides the 
amount of grape harvested for wine production (in quintals) and the extension of the vineyards 
(in hectares) from 1980 onwards. For the period investigated here, i.e., 1980-2019, the data are 
not homogenous over time in terms of spatial aggregation. Between 1980 and 1993, and from 
2006 to 2019, grape yield data are provided at provincial level (NUTS3), from 1994 to 2000 at 
regional level (NUTS2), and from 2000 to 2005, at national level only (NUTS0). Thus, data 
have been homogenised on a spatial aggregation maximizing the temporal coverage. The 
national scale is discarded since it cannot properly account for the geographical variability of 
viticulture in Italy. Moreover, with only one harvest a year, the NUTS3 time series is too short 
(13 years) for the purposes of this study. Therefore, the NUTS2 resolution is chosen for the 
following two reasons: first, it is the best compromise between temporal coverage and spatial 
aggregation given the dataset characteristics (i.e., it allows the longest possible time series), and 
secondly because viticultural policies are regulated at regional level. Thus, when NUTS2 data 
are not available, the quintals of grape harvested, and the hectares devoted to vineyards 
provided at NUTS3 level are aggregated to NUTS2 level by computing the yearly sum of the 
provinces within the same region for the periods 1980-1993 and 2006-2019. This operation 
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produces a NUTS2-aggregation time series covering the periods 1980-2000 and 2006-2019 (35 
years), which can frame the spatial variability of grape productivity with enough detail, partially 
considering local policies and viticultural practice. Grape productivity, here defined as grape 
yield (q) over hectares of vineyards, is used to investigate the impact of climate on wine 
production. Employing productivity instead of grape production allows the analysis to be 
independent from the changes in vineyard area. 
 

2.2.2 Bioclimatic indices 

An overview of the bioclimatic indices used in this study, with their formulas and acronyms, is 
presented in Table 2.2.1 . Following the OIV recommendations, five indices based on 
temperature are selected: 

1. Mean temperature during vegetation period (TmVeg): daily mean temperature between 1st 
April to 31st October (Jones et al., 2005). The growing-season temperature plays a key role in 
determining the timing of the phenological phases with higher TmVeg leading to an 
anticipation of the phenological cycle (Malheiro et al., 2013). TmVeg temperatures above 24°C 
and below 13°C are classified as unfavourable for vine cultivation (Eccel et al., 2016). 

2. Heliothermic Huglin index (HI): calculated as daily average between mean and maximum 
temperatures, relative to the baseline temperature of 10 °C, when positive, otherwise equal to 
zero. Then the sum over the period 1st April - 30th September is corrected by a coefficient of 
day duration. The 10 °C temperature commonly defines the physiologically active state of the 
vine, i.e., the baseline temperature at which the vine begins its growth cycle (Huglin M, 1978). 
Higher HI allows increased sugar content in the grapes, which can be desirable depending on 
the wine type. A climate with HI above 3000 degrees day is classified as “very warm” and is 
associated to plant stress (Tonietto & Carbonneau, 2004) that, in turn, can lead to a reduction 
in production. Similarly, HI below 1200 degrees day is considered “too cold” for vine growth 
(Tonietto & Carbonneau, 2004). 

3. Winkler degree days (WI): sum of daily mean temperatures above 10 °C from 1st April to 
31st October. WI provides information about the heat accumulation during the growing season 
(Amerine & Winkler, 1944; Piña-Rey et al., 2020). Analogous to HI, its values are connected to 
the rate of vine growth and the development of the fruits. In this case the “too hot” (“too 
cold”) threshold is suggested above 2700 (below 850) degree day (Eccel et al., 2016).  
 
4. Biologically Effective Degree Days (BEDD): sum of daily mean temperatures between 10 
°C and 19 °C from 1st April to 31st of October. Like WI and HI, BEDD uses a baseline 
temperature of 10 °C for plant growth, but adds a cut-off at 19 °C, above which additional 
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growth is unlikely to happen (Gladstones, 1992). Values of BEDD higher than 2000 and below 
1000 degree day can negatively influence productivity. Gladstones (1992, 2011) proposed to 
adjust this index based on a daylength/latitude related factor as well as a daily temperature 
range factor to account for photosynthetic activity duration of grapevine. A simple version of 
the BEDDs is used here, with only the 19 °C cut-off used, since the focus here is primarily on 
time related change of climate (and therefore the effect of latitude is small), and the BEDDs 
were only slightly affected when the daily temperature range was used. 
 
5. Cool Night Index (CNI): average minimum air temperature in September. The CNI is 
supposed to relate to the grape’s quality (Tonietto & Carbonneau, 2004), where high night 
temperature in September might lead to lower anthocyanin levels in grapes (Moriondo et al., 
2011). Low temperature during harvest period also affects grapes’ quality, being quality of 
paramount importance for wine production, this index is here used in relation to productivity. 
 
Two precipitation-based indices focused on precipitation are also identified: 
 
1. Growing season precipitation index (GSP): rain accumulated from the 1st of April to the 
30th of September. The GSP is relevant to assess the risk of grapevine exposure to water stress 
for not irrigated grapevine as by law in Italy (Blanco-Ward et al., 2007; Blanco-ward et al., 2017; 
Piña-Rey et al., 2020). 
 
2. Spring Rain index (SprR; Raül Marcos-Matamoros et al., 2020): rain accumulated between 
the 21st of April to the 21st of June. This measures the spring wetness: dry springs delay 
vegetative growth, while wet springs induce higher level of vigour in the plant and increase 
fungal disease risk(Dell’Aquila et al., 2023). 
 
The computation of the bioclimatic indices is based on temperature and precipitation data 
extracted from the E-OBS dataset, a gridded daily observational dataset based on 
meteorological stations across Europe (Photiadou et al., 2017; Van Der Schrier et al., 2013). E-
OBS data are provided on a regular latitude-longitude grid with spatial resolutions of 0.1° 
(~11.1 km). The bioclimatic indices are calculated yearly for all E-OBS grid points over Italy 
below 1300 m s.l.a.. Above 1300 m s.l.a., in Italy, there are no vineyards besides the 2.5 ha in 
the Sila National Park (Calabria) and some tiny parcels in South Tyrol, too small to be relevant 
for this study. Then the indices are aggregated at the NUTS2 scale by averaging across the E-
OBS grid-points within each region. The time series of the bioclimatic indices in Sicilia ends in 
2018 (instead of 2019), due to extensive data gaps in the E-OBS dataset, both in temperature 
and precipitation.  
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Table 2.2.1 Acronyms and formulas of the bioclimatic indices used in this study. 

 Definition Formula 
Suitable class 

range 

T
em

p
er

at
u
re

-b
as

ed
 

Mean 
temperature 

during 
vegetation 

period (TmVeg) 

𝑇𝑚𝑉𝑒𝑔 =  𝑇𝑚𝑒𝑎𝑛 

between 1st April to 31th October   

13-24 °C 

(Eccel et al., 
2016) 

Heliothermic 
Huglin index 

(HI) 

HI 

=  K ∑ max[(
(𝑇𝑚𝑒𝑎𝑛  −  10)  + (𝑇𝑚𝑎𝑥 − 10)

2
); 0]

30 Sep

01 Apr

 

K=1.04 length of days coefficient 

1200-3000 °C 

(Tonietto and 
Carbonneau, 

2004) 

Winkler degree 
days (WI) 

𝑊𝐼 =  ∑ 𝑚𝑎𝑥[(
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
 −  10); 0]

31 𝑂𝑐𝑡

01 𝐴𝑝𝑟

 

850-2700 °C 

(Eccel et al., 
2016) 

Biologically 
Effective 

Degree Days 
(BEDD) 

𝐵𝐸𝐷𝐷 =  ∑ 𝑚𝑖𝑛{𝑚𝑎𝑥[(
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
 

31 𝑂𝑐𝑡

01 𝐴𝑝𝑟

−  10);  0]; 9} 

1000-2000 °C 
(Gladstone, 

2004) 

Cool Night 
Index (CNI) 𝐶𝑁𝐼 =

1

30
 ∑ 𝑇𝑚𝑖𝑛

30 𝑆𝑒𝑝

01 𝑆𝑒𝑝

 

12-18 °C 
(Tonietto and 
Carbonneau, 

2004) 

P
re

ci
p

it
at

io
n

-b
as

ed
 

Growing season 
precipitation 
index (GSP) 

𝐺𝑆𝑃 =  ∑ 𝑃𝑟𝑒𝑐

30 𝑆𝑒𝑝

01 𝐴𝑝𝑟

 

Prec: total precipitation 

200-600 mm 

(Badr et al., 
2018) 

Spring Rain 
index (SprR) SprR =  ∑ 𝑃𝑟𝑒𝑐min

21 Jun

21 Apr

 --- 
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2.3 METHODS 

2.3.1 Trend analysis 

A trend analysis for the bioclimatic indices is performed to assess the evolution of the climatic 
condition in Italy in the period 1980-2019 (with the exception of Sicilia, where time series cover 
the period 1980-2018). The analysis is also extended to productivity, production, and vineyard 
area to frame the state of the business. The non-parametric Mann-Kendall test is used to verify 
the presence of a trend with a level of significance of 5% (Hanif et al., 2022; Mann, 1945). 
Additionally, the magnitude of possible trend is estimated using Sen’s slope estimator (Kh 
Aswad et al., 2020).  

2.3.2 Single and multi-regressive approach  

For the single-regressive approach, the Spearman correlation coefficient between the time 
series of individual indices and grape productivity is computed at NUTS2 scale. The threshold 
for statistical significance is set to 95%. Then, a multilinear regression 
(y=a*Index1+b*index2+c*index3 etc) analysis is performed to explore the possibility that a 
combination of indices explains a higher portion of the productivity variability compared to an 
individual index. The best subsets regression technique is applied at regional level to identify 
the optimal combination of indices and relative coefficients for the statistical predictive model 
of grape productivity. This method aims to find the subset of predictors (in this case the 
bioclimatic indices) that best predicts the outcome variable (productivity) using all the possible 
combinations of predictors, while removing the irrelevant ones to simplify the model. The 
validation is based on the k-fold cross validation method that accounts for non-independent 
predictors (Kassambara, 2017). The data are first randomly divided into k subsets (k-fold) of 
approximately equal size, with k equals 5. One-fold (10% of the data) serves as validation set 
and the remaining folds (90% of the data) as training set. This procedure is repeated k times; 
for every iteration, different groups of data serve as training and testing sets, and the mean 
squared error is computed at each time. The model prediction error, i.e., cross validation error, 
is computed as the average of all the mean squared errors (James et al., 2021; Kuhn & Johnson, 
2013; Wassennan, 2004). When the coefficient of determination, i.e., the adjusted R squared 
(AdjR^2), indicates a skilful model, the multi-regressive model is used to predict past 
productivity based on the selected bioclimatic indices.  If the Pearson correlation between 
observed and predicted productivity is significant at the 95th level (p<=0.05), the variance 
explained by the multi-regressive model is compared to the maximum variance explained using 
one index at a time, to evaluate the added value of the multi-regression model compared to the 
single-regression method. 
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The above-described analysis is performed first on raw data. Then, to isolate the interannual 
variability (i.e., the high frequency component) in the time series of both productivity and 
bioclimatic indices, the linear trend is removed from the raw series when a statistically 
significant trend is detected. In the time series not showing significant trends, the climatological 
mean is removed. The comparison of the raw data and the high frequency component 
correlations allows to determine the fraction of yield variability associated with the long-term 
trend (and possibly with a climate change signal) and the interannual (i.e., natural) variability, 
respectively. 

2.4 RESULTS 

2.4.1 Grape Productivity in Italy 

Figure 2.4-1 shows the most productive areas in terms of (a) average annual productivity and 
(b) contribution to total Italian wine production. Some administrative regions with quite high 
average annual productivity, as Abruzzo and Trentino-Alto Adige (ABR, TRA > 100 q/ha), 
may limitedly contribute (<5%) to the national production. Vice versa, regions like Sicilia (SIC), 
show a low productivity, but are major contributors to the Italian wine production (>15%). 
This depends on the areas devoted to the vineyards (SIC ~ 137000 ha, ABR 36700 ha, TRA 
15200), and to the management techniques in place.  

Veneto (VEN), Puglia (PUG), Sicilia (SIC), in violet, followed by Emilia-Romagna (E-R) in 
red, are the most important wine producing regions in Italy explaining together more than half 
of the total national production (Figure 2.4-1b). Other important wine-growing regions are 
Toscana (TOS), Piemonte (PIE), as well as Lombardia (LOM), well-known worldwide for the 
quality of their wines. PIE has the highest numbers of appellation of origin (DOC, DOCG) 
and geographical indications (IGP) in Italy, followed by TOS, VEN and LOM (Sarnari, 2022). 
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Figure 2.4-1 : Map of Italy showing a) yearly average productivity (q/ha) in the period 1980-2019 and b) 

contribution to the national total production in each region in percentage. The list of regions with their 

labels is reported in Table A 1 

2.4.2 Trend analysis  

Table 2.4.1 shows the trend analysis for both bioclimatic indices and productivity. The latter 
proves to be independent from the changes in vineyard-devoted area. Productivity shows 
significantly positive trends in Basilicata (BAS), Campania (CAM), Emilia Romagna (E-R), 
Friuli-Venezia Giulia (FVG), Puglia (PUG), Veneto (VEN), and negative only in Sicilia (SIC) 
and Trentino-Alto Adige (TRA), besides the strong reduction in vineyard area in all Italian 
regions, except TRA (Table A 1). The temperature-based indices reflect in their trends the 
general temperature increase in Italy reported in literature (Bartolini et al., 2008; Gentilucci et 
al., 2019; Toreti & Desiato, 2008). Indices including maximum temperature, i.e., BEDD, WI 
and HI, exhibit strongly positive trends everywhere and significance in almost all regions. On 
the contrary those based on mean or minimum temperature, although positive in most cases, 
show small and mainly non-significant slopes, especially CNI index. This is consistent with the 
more limited warming in autumn and winter observed in southern Europe in the 1985-2010 
period (Van Den Besselaar et al., 2015). Precipitation-based indices show a less homogenous 
picture, but in general characterised by positive and significant trends in the southern Italy, and 
negative, but mostly non-significant, trends in the central and northern regions. .
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Table 2.4.1: Mann Kendal Z and Sen’s Slope of the trend analysis of bioclimatic indices and productivity over the period 1980-2019. 

The * and bold font mark statistically significative trend (p<=0.05) 

  
Productivit

y 
BEDD HI WI Tm Veg CNI GSP SprR 

Region 
Cod.R

eg. 
Z 

Sen’s 
Slop

e 
[(q/h

a) 
/year

] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[°C/ye
ar] 

Z 

Sen’s 
Slope 

[°C/ye
ar] 

Z 

Sen’s 
Slope 

[mm/ye
ar] 

Z 

Sen’s 
Slope 

[mm/ye
ar] 

Abruzz
o 

ABR 
0.6
0 

0.31 
4.8
6 

5.69* 
4.7
7 

13.25* 
4.9
5 

11.52* 
4.9
5 

0.06* 
1.5
7 

0.02 
2.7
3 

2.07* 
2.0
6 

1.48* 

Basilicat
a 

BAS 
2.4
5 

0.85
* 

5.0
7 

5.15* 
3.8
1 

8.46* 
4.9
8 

10.61* 
5.1
6 

0.05* 
3.2
3 

0.05* 
4.4
7 

2.7* 
1.8
5 

1.18 

Calabria CAL 
-

0.7
9 

-0.05 
1.2
5 

1.08 
2.2
6 

2.35* 
2.5
2 

2.4* 
2.5
3 

0.02* 
0.9
0 

0.01 
2.1
3 

1.68* 
-

0.6
9 

-0.4 

Campan
ia 

CAM 
2.2
7 

0.35
* 

4.5
1 

4.71* 
3.5
5 

7.44* 
4.2
1 

9.09* 
4.3
7 

0.05* 
2.5
7 

0.04* 
1.8
3 

1.99 
1.1
8 

0.72 

Emilia 
Romag

na 
E-R 

2.7
3 

1.1* 
4.0
7 

3.37* 
5.2
1 

11.97* 
4.4
4 

8.31* 
4.6
0 

0.04* 
0.0
5 

0 
-

0.8
3 

-0.84 
0.4
3 

0.23 

Friuli 
Venezia 
Giulia 

FVG 
2.2
3 

0.63
* 

2.3
2 

2.01* 
4.2
8 

8.7* 
2.8
8 

3.88* 
3.4
6 

0.03* 
0.0
0 

0 
-

0.9
8 

-0.67 
-

0.4
8 

-0.62 
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Productivit

y 
BEDD HI WI Tm Veg CNI GSP SprR 

Region 
Cod.R

eg. 
Z 

Sen’s 
Slop

e 
[(q/h

a) 
/year

] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[°C/ye
ar] 

Z 

Sen’s 
Slope 

[°C/ye
ar] 

Z 

Sen’s 
Slope 

[mm/ye
ar] 

Z 

Sen’s 
Slope 

[mm/ye
ar] 

Lazio LAZ 
-

0.5
7 

-0.14 
5.1
4 

4.99* 
4.5
3 

9.8* 
4.3
2 

10.52* 
4.4
3 

0.05* 
2.0
4 

0.04* 
-

0.1
3 

-0.16 
-

0.1
7 

-0.16 

Liguria LIG 
0.2
5 

0.13 
2.8
5 

3.41* 
3.9
3 

8.64* 
2.8
3 

4.89* 
3.3
3 

0.03* 
-

2.2
6 

-0.03* 
-

1.2
9 

-1.85 
-

0.7
6 

-1.05 

Lombar
dia 

LOM 
0.9
3 

0.24 
4.7
4 

4.77* 
5.7
4 

12.15* 
5.3
9 

9.38* 
5.5
1 

0.05* 
0.6
2 

0.01 
-

1.8
1 

-2.4 
-

1.1
1 

-1.03 

Marche MAR 
-

1.3
6 

-0.6 
2.0
6 

1.51* 
3.0
2 

7.94* 
3.2
5 

6.71* 
3.3
0 

0.03* 
-

0.1
7 

0 
0.5
2 

0.82 
1.9
9 

1.7* 

Molise MOL     
0.3
7 

0.08 
4.4
9 

4.58* 
3.4
1 

8.05* 
3.8
3 

7.68* 
4.0
9 

0.04* 
1.2
2 

0.02 
3.1
2 

3.04* 
2.6
7 

1.86* 

Piemon
te 

PIE 
1.2
8 

0.14 
4.4
2 

4.6* 
5.7
4 

10.96* 
5.3
8 

7.43* 
4.8
8 

0.04* 
-

0.9
8 

-0.01 
-

1.6
2 

-2.33 
-

1.2
7 

-1.67 

Puglia PUG 
2.2
2 

1.11* 
6.6
5 

3.33* 
3.6
5 

7.62* 
5.1
2 

11.03* 
5.2
0 

0.05* 
3.7
2 

0.07* 
4.0
5 

2.32* 
2.6
4 

1.27    

Sardegn
a 

SAR 
-

1.0
8 

-0.22 
6.0
7 

7.5* 
4.8
4 

13.02* 
6.6
2 

14.47* 
6.8
1 

0.07* 
2.9
7 

0.04* 
-

0.5
1 

-0.59 
-

1.2
0 

-0.7 

Sicilia SIC 
-

3.4
4 

-
0.69

* 

5.7
6 

6.35* 
4.6
7 

10.51* 
5.4
7 

15.06* 
5.4
3 

0.07* 
3.1
9 

0.04* 
2.9
5 

1.50* 
-

0.2
2 

-0.07 
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Productivit

y 
BEDD HI WI Tm Veg CNI GSP SprR 

Region 
Cod.R

eg. 
Z 

Sen’s 
Slop

e 
[(q/h

a) 
/year

] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[GDD/y
ear] 

Z 

Sen’s 
Slope 

[°C/ye
ar] 

Z 

Sen’s 
Slope 

[°C/ye
ar] 

Z 

Sen’s 
Slope 

[mm/ye
ar] 

Z 

Sen’s 
Slope 

[mm/ye
ar] 

Toscana TOS 
4.2
0 

0.4* 
0.2
9 

0.53 
0.5
5 

1.31 
0.9
2 

1.78 
0.9
0 

0.01 
0.2
3 

0 
-

1.0
1 

-1.27 
-

0.3
8 

-0.42 

Trentin
o Alto 
Adige 

TRA 
-

2.2
4 

-
0.55

* 

5.3
2 

5.37* 
35.
00 

10.88* 
5.9
1 

6.92* 
6.3
3 

0.05* 
0.9
2 

0.02 
-

1.1
3 

-1.78 
-

1.3
9 

-1.27 

Umbria UMB 
1.5
0 

0.38 
1.9
9 

2.29* 
1.9
7 

4.89* 
2.2
0 

5.47* 
2.5
7 

0.03* 
0.4
7 

0.01 
-

0.4
4 

-0.31 
0.2
0 

0.09 

Valle 
d’Aosta 

VDA 
-

1.5
8 

-0.25 
5.3
9 

7.05* 
6.5
5 

12.22* 
5.8
9 

7.91* 
5.2
4 

0.06* 
0.0
0 

0 
-

3.4
2 

-2.72* 
-

1.4
6 

-1.26 

Veneto VEN 
3.2
7 

1.03* 
4.5
6 

5.04* 
5.4
9 

13.6* 
5.0
9 

9.4* 
5.1
2 

0.05* 
0.3
8 

0.01 
-

1.9
2 

-1.17 
-

0.4
6 

-0.57 
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2.4.3 Climate-productivity relationship  

The time series of the bioclimatic indices show values in classes not favourable to grapevine 
growth for temperature-based indices in 3 regions (out of 20) among those contributing less 
than 5% to the total Italian production (Figure 2.4-2b). Specifically, “too-cold” BEDD values 
are observed in Friuli Venezia Giulia (FVG), Trentino-Alto Adige (TRA) and Valle d’Aosta 
(VDA), while HI, WI and TmVeg in the “too-cold” class are found in TRA and VDA (Figure 
2.4-2). However, this is not accompanied by a significant decrease in productivity (Figure A 1), 
indicating on the one hand a high level of local adaptation to unfavourable climate conditions, 
and on the other hand the need to adapt the existing thresholds to the Alpine regions, like 
FVG, TRA and VDA. The occurrence of “very cool nights” is widespread in central and 
northern Italy, while warm nights affect southern regions (Puglia (PUG), Sardegna (SAR) and 
Sicilia (SIC)) but no statistically significant relationship with productivity can be found for CNI 
and precipitation-based indices (Figure A 1).  

During the four decades analysed, all temperature-based indices show positive correlations with 
the productivity over Italy, with the exception of a few regions; especially, Sicilia (SIC) is 
characterised by a strong negative correlation in all cases (Figure 2.4-2). This could suggest that 
the winegrowing practices have adapted over time to the increasing temperature (Boselli et al., 
2016). The strongest and statistically significant correlations are found in the northeast Italy 
(VEN and E-R) and southern regions (PUG, BAS and CAM), among the regions contributing 
the most at the national wine production (cf. Figure 2.4-2 to Figure 2.4-1b). In VEN, HI index 
shows the highest correlation (almost 0.6), explaining up to the 35% of total productivity 
variability, while other temperature-indices (BEDD, WI, TmVeg) range from 27% to 30% of 
explained variability. E-R shows positive and significant correlation for BEDD and HI, 
between 0.35 and 0.39, accounting for up to the 15% of the total productivity variability. Similar 
ranges are found for the south of Italy in CAM, while the highest correlations (ρ= 0.56) are 
registered in PUG and BAS, where respectively BEDD and TmVeg explain the 31% of the 
productivity variability. The CNI index shows significant correlations of almost 0.4 only for 
PIE and PUG. This is not surprising since CNI is supposed to relate to grape quality rather 
than productivity. However, as quality is of paramount importance in the wine sector, the CNI 
could be indirectly linked to grape productivity since it is common practice to select grapes in 
the field before harvesting in order to preserve the quality of the final product. SIC stands out, 
being the only Italian region showing strongly negative and significant correlations for all 
temperature-based indices, ranging from 0.47 (CNI) to 0.68 (TmVeg), with TmVeg explaining 
up to 46% of the productivity variability. Temperature seems to have a strong effect on Sicilian 
grape productivity and the projected increase in temperature (Bucchignani et al., 2016) could 
threaten production. SIC is also the only region showing a significant decreasing trend in both 
productivity and in vineyard-devoted area (Table 2.2.1 and Table A 1).  
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Precipitation-based indices show weaker correlation and no clear geographical pattern with 
respect to temperature-based indices. Statistically significant results both for GSP and SprR are 
present only in the north-western Italy. Specifically in PIE, where those indices explaining up 
to 14% of the variability, negative correlations suggest that an excess of rain is detrimental for 
the harvest, likely because of the triggering of fungus disease (Gessler et al., 2011; Launay et 
al., 2014). On the other hand, VDA, which is small contributor to the national wine production, 
presents positive and high correlations for both indices (ρ up to 0.4). Vineyards here could be 
less prone to fungus disease given the low temperature of the Alpine area, where VDA is 
located. However, the results might also be spurious since based on only four grid points given 
that most of the region lays above 1300 m s.l.a..  



 

 

41 

41 

 

Figure 2.4-2: Maps of Italy showing the Spearman correlation coefficient between the observed 

productivity and the bioclimatic indices (raw data). The regions where correlations are significant are 

labelled. 
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Figure 2.4-3a shows the Pearson correlation between the observed productivity and the 
productivity predicted using the multi-regressive model (coefficients shown in Table A 2), 
highlighting the relevant bioclimatic indices in each region. The model provides statistically 
significant predictions in 14 out of 20 regions and with correlations above 0.40 in 11 regions 
out of 20. It well represents the productivity of the biggest contributors to the Italian 
production, i.e., Veneto (VEN), Sicilia (SIC) and Puglia (PUG), with significant correlation 
between 0.45 and 0.52 and performs equally well in regions like Piemonte (PIE) and Lombardia 
(LOM) known worldwide for the quality of their wines. The regions where the multi-regression 
model has no skill (i.e., low adjR²) are Toscana (TOS), Marche (MAR) and Abruzzo (ABR) (in 
grey), while is not significant in Umbria (UMB) Lazio (LAZ) and Valle d’Aosta (VDA). These 
regions do not show a significant correlation even with the single regression model. Several 
reasons could explain this result: climate may have a relatively low effect on vine growth, at 
least for the time being, other bioclimatic indices may be better suited for these regions; or local 
management practices have successfully adapted to mitigate the effects of climatic changes.  
Other types of intervention could also explain the lack of correlation, such as planting vineyards 
with more productive grape varieties, or the emergence of premium red wine, which favours 
grape production with a limited yield (Mannini, 2004). 

The advantage of the multi-regression model is its ability to account for the interplay of 
temperature and precipitation-based indices on productivity, while selecting only the most 
appropriate ones. The multiregressive approach also indicates that precipitation-based indices 
can be used to correctly predict productivity, while the single-regression model rarely reveals 
any significant correlation with those indices (Figure 2.4-2). The most remarkable 
improvements are found in CAL, LOM, MOL and TRA, where the predictive model explains 
above 30% of the variance while none of the index alone show significant correlation with 
productivity (Figure 2.4-3b). Benefits are also significant for FVG (+25.3%), LIG (+8.7%) and 
CAM (+10.9%) and for regions important for wine production like VEN (+17.1%), PIE 
(+5.6%), and E-R (+18.7%). There is one cases where a worsening of the performance is found 
in BAS, although the extent of this decrease is less than 2%. In conclusion, the multi-regressive 
model substantially increases the total variability in productivity explained by bioclimatic 
indices in most regions compared to the single-regression approach. Almost a third of the 
variance in productivity is explained in both the northern and southern regions with peaks of 
about 50% in VEN and PUG, others non-climatic factor can contribute to the total variance 
(i.e., vineyard management, market laws, regulations etc).  
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Figure 2.4-3: Maps of Italy showing raw data analysis. a) Pearson correlation coefficient betweeen the 

observed productivity and the productivity predicted by the multi-regression model. Grey colour represent 

regions were the multi-regressive model has no skill, i.e. low AdjR^2. Donuts are displayed on regions 

where correlations are significant (p-value <= 0.05) and indicate which indices are included in the multi-

regression. Within the donuts, orange (blue) colour indicates that temperature-based (precipitation-based) 

indices are included in the multi-regression model for the specific region, as the example in the bottom 

left corner shows. b) Difference between the variance explained using the multi-regression model and the 

maximum variance explained by a single index. Grey colours represent regions where the multi-regression 

model either has no skill or correlation is not significant (indicated with “---"). 

2.4.4 Climate-productivity interannual relationship 

This section investigates to which extent the bioclimatic indices can explain the variability in 
productivity at the interannual time scale, starting from a single-regressive approach (Figure 
2.4-4). A similar pattern to the long-term changes is observed for both precipitation and 
temperature-based indices, although the correlations are substantially lower or not significant. 
This suggests that productivity is less affected by short-term climate fluctuations than by 
systematic changes with few exceptions. In LIG the temperature-based indices HI and WI 
show a statistically significant correlation at interannual time scale, explaining respectively the 
13% and 12% of the productivity total variance. To note that HI shows a significant (positive) 
correlation also in the raw data, while WI does not (Figure 2.4-2 vs Figure 2.4-4). This indicates 
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that LIG productivity is sensible to HI in terms of both its long-term trend and interannual 
variability, while is affected by the year-to-year variation of WI but not by his trend (Figure 
2.4-2). A similar behaviour is observed in TRA for HI and WI that show significant positive 
correlations with productivity at the interannual time scale, explaining 21% and 18% 
respectively, but not in raw data. CNI in PIE also shows a positive and significant correlation 
with productivity, thus PIE is sensitive to CNI at both time scales (Figure 2.4-2). Regarding 
precipitation-based index, there are not significant result at the interannual time scale, 
suggesting that the year by year changing of precipitation has no impact on productivity.  

The multi-regressive model outperforms single-regressive approach finding significant 
correlations in regions where none of the bioclimatic indices alone can explain the interannual 
variability in productivity (Figure 2.4-6b). Substantial improvements up to 44% are found in 
MOL, and up to 23% in CAL, VEN and E-R. The multi-regression allows an improvement 
also in LIG (+13%), and TRA (+33%). 

The multi-regression analysis at interannual time scale provides significant results for 13 regions 
compared with the 14 obtained in the raw data analysis, and it explains similar portions of the 
variance (coefficient in table Table A 3). Finally, comparing the two multi-regression analysis 
(Figure 2.4-6a compared to Figure 2.4-3a), one can notice that most of the regions showing 
predictability (PIE, LIG, FVG, VEN, E-R, CAM, CAL, SIC, TRA) are sensible to both long-
term changes in the bioclimatic indices and their year-to-year variability. Instead, regions like 
LOM and PUG, are affected only by long-term trend and just UMB is affected only by 
interannual variability.  
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Figure 2.4-4: as Figure 2.4-5., but at interannual time scale. Maps of Italy showing the Spearman 

correlation coefficient between the observed productivity and the bioclimatic indices (raw data). The 

regions where correlations are significant are labelled.  
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Figure 2.4-6: as Figure 2.4-3 but at interannual time scale. a) Pearson correlation coefficient between the 
observed productivity and the productivity predicted by the multi-regression model. Grey colours 
represent regions where the multi-regressive model has no skill, i.e. low AdjR^2. Donuts are displayed on 
regions where correlations are significant (p-value <= 0.05) and indicate which indices are included in the 
multi-regression. Within the donuts, orange (blue) colour indicates that temperature-based (precipitation-
based) indices are included in the multi-regression model for the specific region, as the example in the 
bottom left corner shows. b) Difference between the variance explained using the multi-regression model 
and the maximum variance explained by a single index. Grey colours represent regions where the multi-

regression model either has no skill or correlation is not significant (indicated with “---"). 

2.5 DISCUSSION 

The aim of this study is to explore, for the first time, a direct statistical relationship between 
the bioclimatic indices commonly used in viticulture and grape productivity in Italy. The 
research, conducted at the regional scale (NUTS2) in Italy, use 35 years of wine grape 
productivity data from ISTAT and climate variables from the observational dataset E-OBS. To 
understand to what extent the selected bioclimatic indices can explain the changes in grape 
productivity in the past, both single and multi-regressive approaches are investigated. In order 
to compare the impact of long-term changes and inter-annual variability, the analysis is carried 
out on both raw data and the data after the removal of long-term tendencies (see e.g. G. C. 
Koufos et al., 2022). 
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The single-regression approach applied on raw data shows mainly positive correlations between 
productivity and temperature-based indices, highlighting how vineyard management has 
adapted over time to the increased temperature. Interestingly, for regions contributing the most 
to national wine production, like Veneto (VEN), Puglia (PUG) and Emilia-Romagna (E-R), a 
single index can explain up to 35% of the variance in productivity. Similar results are found 
analysing data at interannual time scale, with mostly positive correlations, although the 
correlations are substantially lower and rarely significant. 

In Piemonte (PIE, north-western Italy), negative correlations are found for precipitation-based 
indices, suggesting that an excess of rain could lead to higher risk of fungus disease such as 
downy mildew and be detrimental for the harvest. In this region, a strong link between 
precipitation during spring and downy mildew treatments have been shown also in Salinari et 
al., 2006. Negative correlations with precipitation-base indices are also found at the interannual 
time scale in PIE, as well as in southern regions where rainfall is usually scarce, although these 
correlations are not statistically significant. 

Overall, the interannual climate variability impacts less on productivity than the long-term 
trends. The multi-regressive model, taking advantage from the interplay of temperature and 
precipitation-based indices, proves to be a powerful tool to predict Italian productivity over 
most regions, especially for raw data, i.e., for long-term tendencies. The multi-regressive model 
can explain up to 54% variability in productivity at interannual time scale in Trentino Alto 
Adige (TRA), and up to 52% in Veneto (VEN) and Puglia (PUG) at long term variability. 
Furthermore, this leads to large improvements in the explained productivity variance (e.g. in 
Trentino Alto Adige (TRA) the increase is 39% for raw data, and 44% in Molise (MOL) at 
interannual time scale), even when none of the bioclimatic indices alone exhibit significant 
correlations with productivity. The remaining unexplained variance can depend on other 
factors than climate that range from viticultural practices to quality of the data collected. A 
complete picture of all the factors contributing to the total variability require additional 
investigation and falls out of the scope of this work. 

The study highlights the need for better quality data, including its metadata, and the active 
involvement of local businesses and stakeholders in impact studies to better frame the most 
relevant issue that they face due to climate variability both in the short- and long- term. In fact, 
vineyard management, soil type, variety choice, policies and the market can all affect grape 
productivity, in addition to climate and weather. A limitation of this research is that this 
information is not included in the ISTAT database. 
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2.6 CONCLUSIONS 

This study investigates the impact of bioclimatic indices on wine grape production in Italy and 
results in the development of a multi-regressive model to simulate past productivity changes at 
the regional level. The methodology represents a novelty with regard to the use of bioclimatic 
indicators, which are most often used to assess regional suitability for viticulture, but without 
directly relating them to productivity. The predictive models explain up to 52% of the historical 
harvest variability and thus show potential for being a valuable tool to estimate future changes 
in productivity when used in conjunction with seasonal forecast and/or future climate 
projections. In addition, the proposed methodology tested for Italy can be easily applied to 
other countries and regions as well as at local scale. The involvement of wine consortiums 
could improve quality, resolution and information regarding the data and enhance the 
knowledge on specific climatic challenges the wineries are facing.  

2.7 SUMMARY  

This chapter investigates the relationship between bioclimatic indices computed using the 

observational dataset E-BOS and grape productivity at regional scale. Both single and multiple 

regression approaches are applied, and both interannual and long-term variability are 

considered. The multi-regressive model generally increases the portion of productivity 

variability explained compared to the single index. Furthermore, the impact of interannual 

climate variability on productivity is less significant than that of long-term trends. Climate 

variability is only one of several factors that can affect grape production. Other significant 

factors include agricultural practices, regulations, and market values. This work does not cover 

these factors. 

The main limitation of this section lies in the heterogeneity of the productivity data considered 

and of the Italian wine sector. Productivity data collected by the ISTAT database had to be 

homogenised at NUTS2, and the resulting time series is 39 years long, with a 5-year gap that 

was not possible to fill. The Italian wine sector is heterogeneous, and each region has different 

regulations, needs and standards to fulfil that are, in part, an expression of the heterogeneity of 

the climate in the Italian peninsula. Therefore, the next chapter conducts a similar investigation 

but at a local scale, using productivity data from two Italian wine consortia and high-resolution 

climate models. Moreover, the set of bioclimatic indices is increased by adding three more 

indices based on minimum and maximum temperatures. 
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3.A LOCAL SCALE ITALIAN STUDY OF THE IMPACT OF 
CLIMATE VARIABILITY ON WINE GRAPE PRODUCTIVITY 
USING A CONVECTIVE MODEL 

Abstract 

Climate is tied to viticulture, as it determines the suitability of an area and influences the yield 
and quality of wine grapes. Traditional wine-growing regions are therefore threatened by the 
expected change in climate. Italy has a thriving agricultural sector, with wine production being 
a significant contributor. In 2022, Italy was the second-largest exporter of wine, with a value of 
7.8 billion euros. In the coming decades, the wine industry is then likely to be impacted by the 
adverse effects of climate change.  

This study evaluates the potential of convection-permitting climate models to represent the 
impact of climate variability on wine grape productivity at the local scale in Italy. Temperature 
and precipitation-based bioclimatic indices are computed by using climate data from 
observations, a climate reanalysis product, a regional climate model and a convection 
permitting climate model (CPM).  The article explores the potential for predicting wine grape 
productivity at a local scale by regressing productivity data provided by two wine consortia in 
northern and central Italy onto bioclimatic time series. The results indicate a high correlation 
between indices and productivity, but only a few indices are statistically significant. In addition, 
bioclimatic indices are good predictors of wine grape productivity. However, the CPM 
simulation does not show any added value compared to the use of other climatic data, unless 
precipitation-based indices are considered. 

This assessment shows the potential of convection permitting climate modelling in predicting 
the observed grape wine productivity and can be used as a basis for utilising CPMs in future 
impact studies, especially when convective precipitation is the primary impact driver or when 
high-resolution climatic data is necessary. 

3.1 INTRODUCTION 

Winegrowing has strong socio-economic impact and is one of the principal agricultural 
economic activities in Italy, that in 2022 was the world's leading wine producer (49.8 million 
hl), and second largest wine exporter, with a value of 7.8 billion euros, drop in production is 
expected in 2023, estimated at 43.9 million hectolitres (-12% / 2022) (OIV, 2023).  
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Climate plays a significant role in viticulture, determining the suitability of an area and 
influencing wine grape yield and quality. Over the coming decades, the wine sector is expected 
to be affected by climate change especially in Italy that is part of the Mediterranean climatic 
hotspot (Tuel & Eltahir, 2020), where the impact of climate change is expected to be more 
severe than the global average (Bernetti et al., 2012; Sacchelli et al., 2016). In this context, many 
studies investigated the impact of rising temperatures and changing rainfall patterns on grape 
growth (Bagagiolo et al., 2021; Gentilucci, 2020). Temperature is the primary driver for the 
phenological phases (Fraga et al., 2016), and a warmer climate may lead to an earlier onset of 
phenological phases and to a shorter growing cycle, increase frost-related risks, as budburst 
occurring earlier in spring, when frost events are still frequent (Lamichhane, 2021; Trought et 
al., 1999). Furthermore, traditional wine-producing regions, as Douro in Portugal, La Rioja in 
Spain, Bordeaux in France, and Tuscany in Italy, are expected to experience important shifts 
in viticulture suitability that can consequently causes a decline in production (Adão et al., 2023; 
Rafique et al., 2023; Sgubin et al., 2023; Tóth & Végvári, 2016). 

A common tool to investigate the impact of climate variability and change on the wine sector 
is the use of bioclimatic indices, developed from climate variables for specific plants and crops 
(Badr et al., 2018; Chou et al., 2023; Gaitán & Pino-Otín, 2023). A set of bioclimatic indices, 
based on temperature and heat accumulation (OIV, 2015), was proposed by the International 
Organisation of Vine and Wine (OIV), while precipitation-based indices were developed by 
Badr et al., (2018) considering the research of Blanco-Ward et al., (2007). Bioclimatic indices 
are commonly used to assess a region's suitability for viticulture or zoning purposes, as well as 
in relation to phenology, harvest date and alcohol concentration (Dalla Marta et al., 2010; G. 
Koufos et al., 2014; Sánchez et al., 2019; Teslić et al., 2018). A novel application linking 
bioclimatic indices directly to wine grape productivity data in Italy was successfully proposed 
by Massano et al., (2023) at regional level. 

In Italy the vineyards are planted in extremely different areas, from the coasts to the hills, in 
some case also at considerable altitude (Tarolli et al., 2023). The wine production system is 
complex and fragmented, including both small farms and large companies. To valorise the 
designation of origin, to guarantee a defined level of quality, to improve knowledge with the 
help of the technical office, and promote their wines, producers are organized in wine consortia 
(Consorzi di Tutela) according to the EU and national regulations (e.i. Regulation (EU) 
No 1308/2013, Disciplinari regionali) (Gori & Alampi Sottini, 2014; Ugaglia et al., 2019). To 
address this fragmentation, and account for the typicity of the wine business (Agnoli et al., 
2023; Spielmann & Charters, 2013), yield data from the wine consortia and high-resolution 
climate data are of prominent importance for local-scale impact studies and thus for effective 
adaptation strategies.  
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In the context of impact studies at local scale requiring high-resolution climatic data, the use of 
km-scale convection permitting models (CPM) is increasing (Bamba et al., 2023; Le Roy et al., 
2021; Tradowsky et al., 2023). Thanks to their high spatial resolution (less than 4 km), CPMs 
can represent convection explicitly without the need for parameterisation, thus reducing the 
model uncertainty associated to it (Fosser et al., 2024). Compared to coarser resolution regional 
climate models (RCMs), the CPMs showed to represent more realistically hourly rainfall 
intensity, the diurnal cycle of precipitation and the extremes and thus are consider more reliable 
in terms of climate projections (E. Brisson et al., 2016; Coppola et al., 2020; Fosser et al., 2015, 
2020; Kendon et al., 2017). The advantages of CPMs, versus RCMs, has also been explored 
assessing the impact of climate change on agriculture and crop production (Agyeman et al., 
2023; Berthou et al., 2019; Chapman et al., 2020, 2023) 

This study assesses the potential of a CPM to represent the impact of climate variability on 
wine grape productivity at the local scale, by relating temperature and precipitation-based 
bioclimatic indices to wine productivity data provided by two wine consortia in northern and 
central Italy. The CPM performance is validated against climate observations and reanalysis 
product, as well as compared to the driving RCM simulation to investigate the add-value of the 
higher resolution. Single and multiple regression approaches are used to determine the extent 
to which bioclimatic indices can explain changes in wine grape productivity at local scale. The 
multiple regression approach can account for the potential interplay between the bioclimatic 
indices, potentially increasing the proportion of total productivity variability explained by the 
indices, as found in Massano et al. (2023). 

3.2 DATA AND METHODS 

3.2.1 Wine grape data 

Wine grape yield data, as well as the hectares devoted to viticulture, are collected from two 

wine consortia in Italy: 'Consorzio per la tutela del Franciacorta' (FRA) and 'Consorzio Del 

Vino Nobile di Montepulciano' (MON). The first one lies in Franciacorta, a small (200 km2) 

winegrowing region in Lombardia (LOM), in northern Italy, mostly known for sparkling wine 

(Figure 3.2-1a). The area is characterised by a humid subtropical climate according to the Koppen 

classification (Costantini et al., 2013). The Iseo lake, located at the northern border of this 

region, is the sixth largest lake in Italy and tempers in summer the typical heat of the plain while 

in winter protects the vineyards from the freezing air arriving from the north (Leoni et al., 

2019). The consortium was born in 1990 thanks to the endeavour of local producers that felt 

the need to preserve the original production method of the Franciacorta wine. Today the 

consortium is composed by 200 winemakers and preserves three designations: Sebino IGT 

(Typical Geographical Indication), Franciacorta DOCG (Denomination of Controlled and 

Guaranteed Origin) and Curtefranca DOC (Denomination of Controlled Origin), known as 

https://www.wine-searcher.com/regions-lombardy
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“Terre di Franciacorta” before 2011 (https://franciacorta.wine/en/). This analysis focuses on 

the designations of Franciacorta DOCG and Curtefranca DOC from 1997 to 2019 (23 years), 

while neglects Sebino IGT that is available only for a limited period.  

The “Consorzio del Vino Nobile di Montepulciano” (MON) is located within the 

Montepulciano territory in Toscana (TOS) region in the centre of Italy 

(https://www.consorziovinonobile.it/) (Figure 3.2-1) The area is characterized by a 

Mediterranean climate with hot and dry summer, and mild and rainy winters (Costantini et al., 

2013). The consortium preserves three designations, i.e. Vino Nobile di Montepulciano 

DOCG, Rosso di Montepulciano DOC and Vin Santo di Montepulciano DOC, but the study 

focuses on the first two designations that have the longest time series covering 31 years between 

1989 and 2019.  

a) b) 

  

Figure 3.2-1: a) Area of Franciacorta Consortium (FRA), Lombardia (LOM), region, North of Italy. b) Area 

of the Consorzio del Vino Nobile di Montepulciano (MON), Toscana (TOS) region, centre of Italy. 

For each wine designation, the FRA consortium directly reports the quantity of grapes 
harvested in quintals (q), while MON indicates the hectolitres of wine produced (hl) and the 
maximum percentage of the grape yield convertible into wine (70%). For the analysis, the 
hectolitres are converted into quintals using the maximum percentage allowed (hl/0.70), and 
then the productivity (q/ha) is calculated by dividing the quintals of grapes by the vineyard 
area.  

To check the consistency of productivity data between local and regional scales, and thus 
contextualise this work within the broader framework of previous studies (e.g. Di Paola et al., 
2023), the productivity at local scales (FRA and MON) is compared with the productivity at 
regional scale provided by the Italian National Institute of Statistics (ISTAT; Figure A 2). The 
ISTAT provides the harvested wine grape (in quintals) and the area devoted to vines (in 

https://franciacorta.wine/en/
https://www.consorziovinonobile.it/
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hectares) from 1980 onwards. However, the data are not homogenous over time in terms of 
spatial aggregation. Wine grape productivity data are available at the provincial level between 
1980 and 1993 and from 2006 to 2019; at regional level between 1994 and 2000; at national 
scale while from 2000 to 2005. Following Massano et al (2023) procedure, the data were 
homogenised at regional level for Lombardia (LOM) and Toscana (TOS) region, where the 
FRA and MON consortia are respectively located, for the period 1980–2019, with a six-year 
gap between 2000 and 2005. Considering the overlapping periods between ISTAT and the 
consortia, it is found that the regional and local productivity data are significantly correlated 
(p<=0.05) for both FRA and MON (Table S3). In addition, the Welch's t-test proves that both 
consortium distributions are part of the regional population (Table A 4, Figure A 2 and Figure 
A 3).  

3.2.2 Observational climate data 

The observational dataset used is E-OBS, a gridded daily data set covering Europe from 

January 1950 to the present day. E-OBS is constructed using data from meteorological stations 

from the European National Meteorological and Hydrological Services (NMHSs) or other data 

holding institutions (Photiadou et al., 2017; Van Der Schrier et al., 2013). The analysis is based 

on the latest available version (v28) at 0.1 deg (~11 km). The E-OBS database is frequently 

used to validate climate models (Christensen et al., 2008; Jaeger & Seneviratne, 2011; Lorenz 

& Jacob, 2010; Retalis et al., 2016). However, some studies have pointed out limitations in the 

E-OBS representation of precipitation and temperature, mainly due to the inhomogeneity of 

the station network used for interpolation (Kyselý & Plavcová, 2010; Liakopoulou & 

Mavromatis, 2023; Van Der Schrier et al., 2013). 

In addition to observations, the analysis uses a high-resolution convection-permitting reanalysis 

product, called SPHERA (High rEsolution ReAnalysis over Italy; (Cerenzia et al., 2022; 

Giordani et al., 2023)), produced by ARPAE-SIMC (Agency for Environmental Protection of 

the Emilia Romagna Region, Italy). Based on the non-hydrostatic limited-area model COSMO 

(Baldauf et al., 2011; Schättler et al., 2018), SPHERA dynamically downscales the global 

reanalysis ERA5 (Hersbach et al., 2020) assimilating regional in situ observations to improve 

the quality of the simulation. This new reanalysis product covers Italy at a horizontal resolution 

of 2.2 km with a temporal coverage of 26 years (1995-2020). SPHERA reanalysis is validated 

against ERA5 by Giordani et al. (2023) and show an added value for the description of 

moderate to severe local precipitation events, and extreme rainfall. The performance of 

SPHERA demonstrates that it can be a valuable resource for enhancing climate monitoring 

efforts by providing insights into regional climate change impacts (Giordani et al., 2023). 
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3.2.3 Climate model data 

Two climate simulations are provided by the French Centre National de Recherches 

Météorologiques (CNRM) for the period 2000-2018 over Europe. The first based on an RCM 

model, CNRM-ALADIN, and the second based on a CPM model, CNRM-AROME (Lucas-

Picher et al., 2023).  The first simulation, CNRM-ALADIN (hereafter RCM) (Bán et al., 2021), 

has a horizontal resolution of 12.5 km and is the limited area version of ARPEGE-Climate. 

The second simulation, CNRM-AROME (hereafter CPM), is a convection-permitting model 

dynamically downscaled from CNRM-ALADIN, with a resolution of 2.5 km. Convection 

Permitting Models (CPMs) are non-hydrostatic models that can explicitly resolve convection 

for a more accurate representation of surface and orographic fields, typically they have a 

horizontal gridding of less than 4 km. 

3.2.4 Bioclimatic indices 

This study considers ten bioclimatic indices described in detail in the following and summarised 
in Table 3.2.1. Eight of them, recommended by the International Organisation of Vine and Wine 
(OIV), are based on temperature and heat accumulation while the other two are based on 
rainfall accumulation.  

The temperature-based indicators are: 

1. Daily mean temperature during vegetation period (TmVeg), i.e. calculated between 1st April 
to 31st October (Jones et al., 2005). Temperature in spring plays a key role in determining the 
timing of the phenological events, as underlined by Malheiro et al., (2013). In general, higher 
TmVeg leads to an anticipation of the phenological phases, while TmVeg values above 24 °C 
or below 12 °C are considered unfavourable to wine-growing (Eccel et al., 2016). 

2. Heliothermic Huglin index (HI), which is calculated by summing, when positive, the average 
between the mean and the maximum temperature, in relation to the baseline temperature, over 
the period from 1st April to 30th September and corrected by a coefficient of day duration. 
The physiological threshold for the start of the vine growth cycle is a temperature of 10°C 
(Huglin M, 1978; Teslić et al., 2018). The HI index is tied to vine growing and grape sugar 
concentration with higher HI leading to an increased vine vigour and higher sugar content in 
the grapes. According to Tonietto and Carbonneau (2004), a climate with a heat index (HI) of 
more than 3000 degrees per day is classified as 'very warm', while below 1200◦ is “too cold”. 
Both these situations are associated to plant stress and thus lead to a production reduction. 

3. Winkler degree days (WI), which provides a measure of heat accumulation during the 
growing season being the sum of daily mean temperatures above 10°C from 1st April to 31st 
October (Amerine & Winkler, 1944; Piña-Rey et al., 2020). Similarly to HI, WI index is linked 
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to the rate of growth of the vines and the development of the fruits with values between 850 
and 2700 degree days being optimal for the wine production (Eccel et al., 2016). 

4. Biologically Effective Degree Days (BEDD), which is the sum of daily mean temperatures, 
when in the range between 10 °C and 19 °C, from 1st April to 31st of October. The BEDD 
index uses the same baseline temperature as WI and HI indices, but considers additional vine 
growth unlikely to occur above the upper temperature threshold of 19°C (Anderson et al., 
2012; Gladstones, 1992). As the previous temperature-based indices, too high (above 2000°) 
or too low (below 1000°) values of BEDD can potentially reduce productivity. 

5. Cool Night Index (CNI), defined as the average minimum air temperature during the month 
of September. Low minimum temperatures in September increase the polyphenolics in the 
grapes and are beneficial for the overall quality of the harvest (Tonietto & Carbonneau, 2004). 
Although CIN is more related to grape quality than quantity, Massano et al (2023) found that 
this index can be help explaining changes in productivity especially when using the multi-
regression approach.  

6. Minimum temperature during vegetative period (TnVeg), which is the minimum temperature 
occurred during the vegetative period (1st April to 31st October). This index is important to 
assess the occurrence of spring frost that pose a significant risk to viticultural practices and 
production, the damage threshold is fixed at -2 °C but it is strictly dependent on local 
conditions (Sgubin et al., 2018).   

7. Maximum temperature during vegetative period (TxVeg), which is the maximum 
temperature occurred during vegetative period. This index is useful for assessing the occurrence 
and the severity of summer hot-spells that can damage to vineyard thus reducing the wine 
productivity (Cabré & Nuñez, 2020). The heat stress threshold is set at 35°C, above which 
physiological damage to the vines is expected (Hunter & Bonnardot, 2011). 

8. Minimum temperature during rest period (TnRest), defined as the minimum temperature 
during rest period, i.e. 1st November to 31st March. Useful for assessing winter severity. This 
index is use to determine winter severity, grapevines can tolerate temperatures as -25 °C 
(Düring, 1997; Lisek, 2012)  , although damage can already occurs at -15 °C  (Eccel et al., 2016) 

The indices based on precipitation are: 

1. Growing season precipitation index (GSP), defined ad rainfall accumulated from 1st April 
to 30th September and is used to assess the water stress for non-irrigated grapevines (Blanco-
Ward et al., 2007; Piña-Rey et al., 2020), as in Italy where irrigation is only allowed in extreme 
cases (e.g. long drought periods). 

2. Spring Rain index (SprR), which measures the amount of rain accumulated between the 21st 
of April and the 21st of June (Raül Marcos-Matamoros et al., 2020). This indicator of spring 
wetness can be related to production. In fact, while dry springs can delay vegetative growth, 
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wet ones can increase plant vigour but also lead to an higher risk of fungal diseases (Dell’Aquila, 
2022).
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Table 3.2.1: Acronyms and formulas of the bioclimatic indices used. 

 Definition Formula 
Suitable class 

range 

T
em

p
er

at
u

re
-b

as
ed

 

Mean temperature 

during vegetation period 

(TmVeg) 

𝑇𝑚𝑉𝑒𝑔 =  𝑇𝑚𝑒𝑎𝑛 

between 1st April to 31th October 

13-24 °C 

(Eccel et al., 

2016) 

Heliothermic Huglin 

index (HI) 

HI =  K ∑ max[(
(𝑇𝑚𝑒𝑎𝑛  −  10) + (𝑇𝑚𝑎𝑥 − 10)

2
); 0]

30 Sep

01 Apr

 

K=1.04 length of days coefficient 

1200-3000 °C 

(Tonietto and 

Carbonneau, 

2004) 

Winkler degree days 

(WI) 
𝑊𝐼 =  ∑ 𝑚𝑎𝑥[(

𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
 −  10); 0]

31 𝑂𝑐𝑡

01 𝐴𝑝𝑟

 

850-2700 °C 

(Eccel et al., 
2016) 

Biologically Effective 
Degree Days (BEDD) 

𝐵𝐸𝐷𝐷 =  ∑ 𝑚𝑖𝑛{𝑚𝑎𝑥[(
𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥

2
 −  10);  0]; 9}

31 𝑂𝑐𝑡

01 𝐴𝑝𝑟

 
1000-2000 °C 

(Gladstones, 

1992) 

Cool Night Index (CNI) 𝐶𝑁𝐼 =
1

30
 ∑ 𝑇𝑚𝑖𝑛

30 𝑆𝑒𝑝

01 𝑆𝑒𝑝

 

12-18 °C 
(Tonietto and 

Carbonneau, 

2004) 

Minimum temperature 

during vegetative period 

(TnVeg) 
𝑇𝑛𝑉𝑒𝑔 =  𝑇𝑚𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝐴𝑝𝑟 − 31 𝑂𝑐𝑡 

Damage 

threshold -2 °C 

(Sgubin et al., 
2018) 

Maximum temperature 

during vegetative period 

(TxVeg) 

𝑇𝑥𝑉𝑒𝑔 =  𝑇𝑚𝑎𝑥 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝐴𝑝𝑟 − 31 𝑂𝑐𝑡 

Upper threshold 

35 °C (Hunter & 

Bonnardot, 
2011). 

 

Minimum temperature 

during rest period 

(TnRest) 

𝑇𝑛𝑅𝑒𝑠𝑡 = 𝑇𝑚𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝑁𝑜𝑣 − 31 𝑀𝑎𝑟 

Above -25 °C 

(Düring, 1997; 

Lisek, 2012) 

P
re

ci
p

it
at

io
n

-b
as

ed
 

Growing season 

precipitation index 

(GSP) 

𝐺𝑆𝑃 =  ∑ 𝑃𝑟𝑒𝑐

30 𝑆𝑒𝑝

01 𝐴𝑝𝑟

 

Prec: total precipitation 

200-600 mm 

(Badr et al., 

2018) 

Spring Rain index 

(SprR) 
SprR =  ∑ 𝑃𝑟𝑒𝑐

21 Jun

21 Apr

 
(Dell’Aquila, 

2022) 



Laura Teresa Massano 

 

58 

58 

3.2.5 Validation of climate simulation and calculation of bioclimatic indices 

In this work, the observational dataset E-OBS, the climate reanalysis product SPHERA and 

the climate model simulations, at regional (RCM) and convection-permitting scale (CPM), are 

used for the calculation of the above-described bioclimatic indices. The analysis focuses on the 

19 years from 2000 to 2018 that is the longest period available for RCM and CPM simulations 

and in common with E-OBS, SPHERA as well as productivity data from FRA and MON. 

To compare the observational datasets and climate simulations among each other and on equal 
terms (Berg et al., 2013), they are first all remapped on a common grid, i.e. E-OBS regular grid, 
at ~11 km. Tests performed to investigate the effects of the remapping strategy on the climate 
variables showed that the results are not impacted by the chosen resolution (not shown).  

Then, the climatic variables (i.e. P: Precipitation; TM: mean temperature, TX: max temperature 
and TN: min temperature) are computed on all available grid cells within the areas of interest 
(LOM and TOS). Subsequently, the consortium territory is cropped using the respective shape 
files of FRA and MON. Finally, the spatial average is calculated by weighing the contribution 
of each grid cell according to the percentage of the cell falling within the consortium. The shape 
file of the FRA consortium's territory is provided directly by the consortium’s technical office, 
while the shape file for MON is created by selecting the municipality listed in the appellation 
regulation for the relevant denominations (i.e., Montepulciano municipality). The same 
methodology is used to calculate the bioclimatic indices.  

The precipitation and temperature time series of the climate simulations are analysed against 
the observational datasets to evaluate the biases in the climatic conditions in the region of 
interest, prior to examine the bioclimatic indices. In particular, the CPM performance is 
evaluated for the common period 2000-2018 against both SPHERA and E-OBS and compared 
to the RCM. Although the E-OBS dataset is often used for model validation (Kyselý & 
Plavcová, 2010), this study has opted to use the new SPHERA reanalysis product as the 
reference dataset, while still including the E-OBS in the analysis. SPHERA and E-OBS time 
series together provide a range within which the CPM and the RCM time series are expected 
to fall, similar to a ‘confidence interval’.  

The comparison between SPHERA (E-OBS) and CPM, as well as SPHERA (E-OBS) and 
RCM, is carried out by computing the Spearman correlation and RSME. This allows us to 
analyse whether the variability of SPHERA data is reproduced by CPM and RCM simulations, 
and the distance between simulations and references. Additionally, the mean values of 
SPHERA (E-OBS) and CPM, as well as SPHERA (E-OBS) and RCM, are compared using a 
Welch’s two-tailed t-test.  
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Finally, a trend analysis for both the climatic variables and the bioclimatic indices is performed 
to assess the evolution of the climatic condition in FRA and MON in the period 2000-2018; 
the same analysis is also carried out for productivity data. The non-parametric Mann-Kendall 
test and the Sen's slope estimator are used to determine the presence and the magnitude of 
trends with a significance level of 5% (Hanif et al., 2022; Mann, 1945). The assessment of 
possible trends aims to investigate whether the long-term component of variability may be 
dominant over the interannual component. 

3.2.6 Single and multi-regression approach 

The Spearman correlation coefficient between each bioclimatic index and wine grape 

productivity is calculated for both consortia area and the threshold for statistical significance is 

set to 95%. This analysis aims at assessing the fraction of wine grape productivity variability 

explained by the bioclimatic indices and the ability of climate models to represent this 

relationship compared to the observational datasets.  

Furthermore, a multi-regressive approach is applied to determine whether a linear combination 

of indices can enhance the total productivity variability explained by the bioclimatic indices 

(Massano et al., 2023). The best subsets regression technique is used to establish the most 

suitable combination of indices. This approach seeks the predictor subset of bioclimatic indices 

that most accurately predicts the outcome variable, i.e. the productivity. It examines all feasible 

predictor combinations and removes irrelevant ones to streamline the model. The k-fold cross 

validation method is employed to identify the optimal model (Kassambara, 2017). This method 

performs cross-validation by randomly dividing the data into k subsets (k-fold) approximately 

of equal size, with k typically set to 5 or 10 (here k = 5 is used). One of the folds serves as test 

set and the remaining as training. This process is repeated k times, whereby varying groups of 

data are utilized as training or testing sets. Subsequently, the mean squared error is computed. 

The average of the mean squared errors of all iterations is the model prediction error (CV - 

cross validation error) (James et al., 2021; Kuhn & Johnson, 2013; Wassennan, 2004). The 

performance of the multi regressive model is assessed by the adjusted R-squared coefficient of 

determination (AdjR2), while the p-value is used to determine statistical significance at 95th 

level. The so optimised multi-regression model is then used to predict the past productivity, 

which is compared to the observed productivity using the Pearson correlation.  

The performances of the single-regression and multi-regression model are assessed by 

comparing the maximum variance explained by each of the two statistical models. Specifically, 

the variance of the observed productivity is estimated in the single-regression and multi-
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regression models by computing, respectively, the Spearman and Pearson correlations with the 

bioclimatic indices. 

3.3 RESULTS 

3.3.1 Validation of the climate simulations 

The precipitation and temperature time series of both CPM and RCM are validated against the 
observational datasets to evaluate the biases in the climatic conditions of the consortia (FRA 
and MON), which could in turn lead to biases in the bioclimatic indices. To this end, Figure 

3.3-1 for FRA, and Figure 3.3-2 for MON, show the precipitation (P) and temperature (TM: mean 
temperature, TX: max temperature and TN: min temperature) time series of E-OBS, SPHERA, 
RCM and CPM for the common period 2000-2018. In MON, E-OBS minimum temperature 
time series shows a strong decrease of almost 2°C between 2015 and 2018 (Figure 3.3-2), which 
is not observed in any of the other datasets. Further investigations highlighted that this 
temperature fall affects the entire TOS and is inconsistent with other observational records 
(not shown). This E-OBS misrepresentation of the temperature field affects consequentially 
the mean temperature time series (Figure 3.3-2), the temporal correlations (Table A 5), and is likely 
to be reflected in the temperature-based indices. Previous studies have shown that E-OBS 
underestimates monthly and seasonal average temperatures when compared to stations 
observations (Liakopoulou & Mavromatis, 2023). In general, both RCM and CPM show high 
and significant temporal correlations with SPHERA for all the climate variables in both 
consortia (Table A 5), indicating that RCM and CPM reproduce the same variability of SPHERA, 
although the climate simulations tend to overestimate mean and maximum temperature while 
underestimating the minimum as reflected by the statistical differences in mean values (Table A 

6). In FRA the variability observed in E-OBS is always reproduced also in RCM and CPM 
simulations. The t-test confirmed that E-OBS is closer in mean value to RCM than CPM 
simulations. 



 

 

61 

61 

 

Figure 3.3-1: Time series of mean (TM), maximum Temperature (TX), minimum (TN) temperature and 
precipitation (P) over FRA area for the period 2000-2018. All the time series are based on data remapped 

on E-OBS grid (~ 11 km).  
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Figure 3.3-2: Time series of mean (TM), maximum Temperature (TX), minimum (TN) temperature and 
precipitation (P) over MON area for the period 2000-2018. All the time series are based on data remapped 

on E-OBS grid (~ 11 km).  

Figure 3.3-3 and Figure 3.3-4 show the ten bioclimatic indices time series computed in the two 
consortia areas for E-OBS, SPHERA, RCM and CPM. All the bioclimatic indices show very 
high and significant temporal correlation between SPHERA and both RCM and CPM in both 
consortia (Table 3.3.1). Similar conclusion can be draw for the comparison of the climate models 
with E-OBS in FRA, while in MON four temperature-base indices (i.e. BEDD, WI, TnVeg, 
CNI) are not significantly correlated likely due to the low correlations in medium and minimum 
temperature (Table A 5). The correlations, especially with SPHERA, tend to be slightly higher 
for the CPM than for the RCM for most indices, despite the higher RMSE in the CPM (Table 

3.3.1). The results of the Welch’s t-test investigate whether the differences in the mean of the 
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different bioclimatic indices between climate simulations and observations datasets are 
significant (Table A 7).  

The strong correlation between SPHERA and climate simulations (Table 3.3.1) indicates that 
RCM and CPM reproduce the same variability of SPHERA, despite the statistical differences 
in mean values (Table A 7) . The same conclusion is valid for the comparison of RCM and CPM 
to E-OBS. This analysis suggests both CPM and RCM could be a valid alternative to 
observational dataset to investigate the impact of climate on viticulture, despite the biases 
affecting the climate simulations. 

 

Figure 3.3-3: Bioclimatic indices time series 2000-2018, averaged on the FRA consortium area.  
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Figure 3.3-4: Bioclimatic indices time series 2000-2018, averaged on the MON consortium area.  

Table 3.3.1: Spearman correlation coefficient and root mean square error (RMSE) of the indices time series. 
Bold font and asterisk (*) indicate a statistically significant result (p>=0.05) 

FRA 

 
SPHERA vs 

CPM 
SPHERA vs 

RCM 
E-OBS vs 

CPM 
E-OBS vs 

RCM 
 

Index ρ RMSE ρ RMSE  ρ RMSE  ρ RMSE Index 

BEDD (GDD) 0.97* 26.62 0.96* 19.39 0.85* 37.29 0.91* 45.78 
BEDD 
(GDD) 

HI (GDD) 0.98* 305.88 0.96* 308.59 0.88* 128.56 0.87* 117.36 
HI 

(GDD) 
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WI (GDD) 0.99* 264.91 0.98* 247.63 0.85* 209.55 0.85* 191.23 
WI 

(GDD) 

TmVeg (°C) 0.99* 1.24 0.98* 1.14 0.85* 0.98 0.84* 0.87 
TmVeg 

(°C) 

TnVeg (°C) 0.63* 1.4 0.95* 2.59 0.65* 1 0.72* 1.53 
TnVeg 

(°C) 

TxVeg (°C) 0.81* 5.11 0.48* 4.42 0.52* 3.56 0.64* 2.77 
TxVeg 

(°C) 

CNI (°C) 0.95* 0.81 0.87* 1.24 0.85* 1.2 0.85* 0.91 CNI (°C) 

TnRest 0.81* 0.76 0.85* 1.99 0.75* 2.14 0.8* 1.17 TnRest 

GSP (mm) 0.64* 295.39 0.74* 410.3 0.5* 204.67 0.55* 103.91 
GSP 
(mm) 

SprR (mm) 0.91* 43.28 0.77* 65.38 0.68* 111.33 0.84* 57.54 
SprR 
(mm) 

MON 

 SPHERA vs 
CPM 

SPHERA vs 
RCM 

E-OBS vs 
CPM 

E-OBS vs 
RCM 

 

Index 
ρ RMSE  ρ RMSE 

(°C) 
ρ RMSE ρ RMSE  

Index 

BEDD (GDD) 0.92* 55.33 0.91* 51.04 0.35 96.32 0.43 96.27 
BEDD 
(GDD) 

HI (GDD) 0.86* 232.29 0.94* 233.54 0.82* 151.35 0.72* 158.76 
HI 

(GDD) 

WI (GDD) 0.93* 284.54 0.93* 284.39 0.45* 217.68 0.31 224.69 
WI 

(GDD) 

TmVeg (°C) 0.93* 1.34 0.92* 1.34 0.42 1.02 0.31 1.05 
TmVeg 

(°C) 

TnVeg (°C) 0.69* 0.94 0.77* 1.76 0.67* 1.36 0.62* 1.58 
TnVeg 

(°C) 

TxVeg (°C) 0.75* 2.75 0.83* 2.52 0.86* 2.02 0.82* 1.84 
TxVeg 

(°C) 

CNI (°C) 0.97* 0.84 0.95* 0.58 0.49* 1.9 0.4 1.38 CNI (°C) 

TnRest 0.9* 1.43 0.86* 1.09 0.8* 1.94 0.79* 1.58 TnRest 

GSP (mm) 0.48* 128.26 0.49* 106.85 0.71* 136.38 0.71* 45.89 
GSP 
(mm) 

SprR (mm) 0.84* 60.96 0.82* 40.48 0.75* 68.15 0.81* 34.61 
SprR 
(mm) 

 

A trend analysis is conducted on climatic and productivity data as well as on bioclimatic indices. 
The presence of a trend may indicate the predominance of a long-term component of variability 
over the interannual component. The aim of the trend analysis is to identify when this occurs. 
In FRA the trend analysis reveals some positive statistically significant trends for temperature 
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and temperature-based indices, especially in the E-OBS datasets, as also observed by Massano 
et al. (2023).  Similar picture is found for the RCM, while for the CPM the only statistically 
significant and positive trend is for CNI. SPHERA reanalysis shows positive and significant 
trend for precipitation and precipitation-based index, that are not observed in the other series. 
For MON, the temperature trends are negative for E-OBS and positive for all other series 
except for TxVeg index computed with SPHERA. This is probably linked with the previously 
discussed misbehaviour E-OBS. Precipitation and GSP show a positive trend also in MON 
with E-OBS series. productivity data tested for trends, show that FRA has a significant positive 
trend in productivity while MON does not.  

3.3.2 Bioclimatic indices control on wine grape productivity 

3.3.2.1 Single regression analysis  

A Spearman correlation analysis is performed to investigate the relation between the different 
bioclimatic indices and wine grape productivity and consequently determine the amount of 
total productivity variability (interannual and long-term) explained by these indices.  

In FRA, the correlation coefficients are similar between climate simulations, observations, and 
reanalysis for the temperature-based indices, while diverge and are not significant for the 
precipitation-based ones (Figure 3.3-5). Few cases are statistical significance: CNI with model 
simulations, SPHERA, and E-OBS; the BEDD index only when RCM and E-OBS are used. 
In these cases, the long-term component of the total variability may be dominant, since BEDD, 
CNI, as well as the FRA productivity, have significant trends (Table A 8). RCM presents a 
statistically significant result also for TnRest, which does not show trend over the period 2000-
2018. In this case, the interannual variability might be more relevant to explain productivity. 
The statistically significant coefficients are all positive indicating a positive effect on 
productivity of BEDD, CNI and TnRest. 

In a previous study, conducted at regional scale using ISTAT productivity data and E-OBS 
(v26), Massano et al. (2023) did not find any statistically significant correlations for LOM 
neither with temperature-based nor precipitation-based indices. This indicates that working at 
a local scale is crucial to improve the portion of productivity variance explained by the 
bioclimatic indices, while the use of CPM for FRA does not provide any advantage compared 
to the RCM.  
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Figure 3.3-5: Spearman correlations coefficients between bioclimatic indices and wine grape productivity 
in FRA. Full colored circles indicate significant correlations (p<=0.05). 

In MON, the correlation between productivity and bioclimatic indices are similar across all the 

datasets for BEDD, HI, WI and TmVeg but show greater variation for all other temperature-

based and the precipitation-based indices (Figure 3.3-6). Significant results are found for 

TnVeg, only using CPM and for TxVeg in all datasets. To note that TxVeg displays a negative 

correlation, indicating that extreme temperatures during the growing period have a negative 

impact on production. This aligns with wine makers expectations and is partially supported by 

results from FRA (Figure 3.3-5), despite not being statistically significant. Both TnVeg and 

TxVeg indices show a significant positive trend (Table A 10), which suggests productivity being 

more sensitive to the long-term component of variability, at least for CPM.  

Only the CPM simulation shows significant correlation for the precipitation-based index GSP. 

This could be linked to the more realistic representation of the precipitation field (Prein et al., 

2015), although positive correlations with GSP are not typical, as an excessively wet season is 

usually detrimental to production. Thus, it is possible that other factors influence this 

correlation, such as specific viticultural practices or vintage management (Priori et al., 2019). 
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For example, harvesting immediately after rainfall may result in the collection of larger grapes, 

thus increasing the productivity. Additionally, specific trimming techniques can improve 

ventilation between the branches, reducing the risk of mould and fungus, and thus limiting the 

negative impact of precipitation on the harvest (Evers et al., 2010).  

The MON case shows improvements compared to the analysis done with ISTAT data by 
Massano et al. (2023). In their analysis, TOS did not show any correlation between wine grape 
productivity and any bioclimatic indices, despite considering a longer time series. Being FRA 
and MON productivity data from the same population as the ISTAT productivity data (Table A 

4 and Figure A 3), these results confirm that the use of the local scale can enhance the portion of 
productivity variability explained by the bioclimatic indices considered. 
 

 

Figure 3.3-6: Spearman correlations between bioclimatic indices and wine grape productivity in MON. 
Full coloured circles indicate significant correlations (p<=0.05). 
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3.3.2.2 Multi-regression analysis 

A multi regression (MR) analysis is carried out and compared with the single regression (SR) 
approach to see if considering a linear combination of bioclimatic indices increases the 
proportion of productivity variability explained by the indices. 

Table 3.3.2 shows the results of the MR model, highlighting the selected bioclimatic indices and 
the variance explained in comparison with the SR method, for each case in both FRA and 
MON. To note that even when the MR selects just one index, this can differ from the single 
regression due to the algorithm chosen for the multi-regression (here K-fold Cross validation). 
The MR confirms that the temperature-based bioclimatic indices are more relevant than 
precipitation-based ones in explaining productivity variability, especially in FRA, where only 
for RCM the GSP is selected as a predictor. In MON, precipitation-based indices are selected 
as predictors in the MR model when using the CPM simulation and SPHERA reanalysis, 
confirming the relative higher importance of precipitation on productivity in this area 
compared to FRA. Thus, for MON, the improved representation of the precipitation field at 
convection-permitting scale could be a relevant factor, since in the other cases precipitation-
based indices are excluded by the MR.  

Table 3.3.2: Donuts chart indicating, for E-OBS, SPHERA, CPM and RCM, the best-performing index for 
the single regression (SR) and the indices included in the multi-regression model (MR), as well as the 
percentage of variance explained by each model (centre of the donut), in FRA and MON. Orange (blue) 
colour indicates temperature-based (precipitation-based) indices. The MR Adjusted R2 is expressed in 
the MR Adj R2 column. 
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The overview on the performance of the single-regression method (SR) and the multi-
regression method (MR) is presented in Figure 3.3-7 show that using a linear combination of 
bioclimatic indices, i.e. MR, increase the proportion of explained total productivity variability, 
especially for FRA. 

Overall, the bioclimatic indices explain a higher proportion of productivity variance in FRA 
compared to MON (Figure 3.3-7a and Table A 12), in line with previous findings at regional level 
for LOM and TOS (Massano et al., 2023). The highest proportion of explained variance in 
productivity is obtained in FRA with the MR approach and CPM data (64%), followed by 

FRA MON 

Data SR MR 
MR 

AdjR2 
Data SR MR 

MR 

AdjR2 

E-OBS 

 

0.31 E-OBS 

 

0.28 

SPHERA 

 

0.43 SPHERA 

 

0.31 

CPM 

 

0.42 CPM 

 

0.34 

RCM 

 

0.57 RCM 

 

0.25 
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SPHERA (56%) and CPM (48%). The variance explained in MON is lower, with a maximum 
of 45% obtained for CPM and the MR approach, very close to SPHERA with MR (42%) and 
to E-OBS with SR (44%). 

The maximum variance in productivity explained by the SR is compared with the MR variance 
(Figure 3.3-7b), demonstrating that the MR better represents productivity variability in FRA in 
all cases except E-OBS, which shows a slight decrease in performance (-7%). Meanwhile, 
SPHERA gains 20%, CPM 14% and RCM 29% with MR compared to SR approach. In MON, 
MR provides a better explanation for productivity variance in SPHERA reanalysis and CPM 
simulation, accounting for an increase of 11% and 21% respectively. However, for the E-OBS 
dataset and RCM simulation, MR performance decreases slightly (-12% and -3% respectively).  

a) b) 

  

Figure 3.3-7: a) The maximum fraction of the wine grape productivity variance (%) explained by SR and 

MR in each consortium, the colour indicates the type of climatic data used, the squared (triangular) shape 

indicates the Muti – regressive (single regressive) approach. b) Variance differences in percentage between 

MR and SR for FRA and MON. 
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3.4 DISCUSSION AND CONCLUSION 

The study assesses the potential of CPM to investigate the impact of climate variability on wine 
grape productivity at a local scale, using bioclimatic indices from the 19-year period 2000-2018.  
The CPM simulation is compared with RCM simulation, SPHERA reanalysis, and E-OBS 
observations. The study uses wine grape productivity data from two Italian wine consortia, 
namely 'Consorzio per la tutela del Franciacorta' (FRA) and 'Consorzio Del Vino Nobile di 
Montepulciano' (MON), to address some of the limitations identified by Massano et al., (2023). 
Specifically, the study aims to improve the quality of data and involve local businesses and 
stakeholders in impact studies. Single and multiple regression approaches are used to account 
for the possible interplay of bioclimatic indices in explaining wine grape productivity variability.  

Overall, the single regression exhibits high values, but statistically significant results are only 

found in a small number of cases at the 95% confidence level. The multi-regression method 

consistently enhances the productivity variability explained by the bioclimatic indices and 

delivers optimal outcomes. 

In FRA, the correlation coefficients are exclusively positive and statistically significant for 

temperature-based indices such as BEDD, CNI, and TnRest. There is a high degree of 

concordance between CPM and SPHERA reanalysis, which is considered as a reference in this 

study. Correlations with precipitation-based indices in FRA are not significant and tend to show 

negative relationships with productivity. The findings suggest that temperature is the main 

factor affecting production, while precipitation has a negative impact on productivity, 

potentially resulting in losses due to fungal diseases in the region. 

The MON results indicate that only CPM provides statistically significant results for the 

precipitation-based index (GSP), which is positively correlated with productivity. Also, 

SPHERA, RCM and E-OBS in this region show positive correlations between precipitation-

based indices and productivity, even if they are not significant. This differs from the 

observations in FRA, where the correlations are negative, even if not significant. However, it 

is worth noting that there are many differences in the geographical area and type of wine 

produced in FRA and MON. FRA is in the humid subtropical climatic zone, while MON is 

situated in the hot summer Mediterranean zone. Other factors, such as vintage management 

techniques and cultivar selection, can also influence productivity variability, in addition to 

climate. Investigation of these factors is beyond the scope of this paper. However, they can 

determine the positive effects of precipitation on productivity in MON. Meanwhile, the 

productivity for both FRA and MON exhibits a negative correlation with TxVeg with all the 

climatic data considered, but it is only significant for MON. This suggests that extreme 
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maximum temperatures during the vegetative season (1st April - 30th October) have harmful 

effects.  

These results, which are obtained at a local scale using data from consortia improve the 

previous studies conducted at regional scale by Massano et al. (2023). However, the use of the 

convective permitting model has a limited impact on the results of this study. The relevance of 

the CPM may not be immediately apparent in this context, as temperature is generally the main 

driver of wine grape production, and the added value of the CPM may be more appreciated 

when precipitation is a dominant factor. 

The assessment presented can serve as a foundation for using CPMs in future impact studies, 

especially when convective precipitation is the dominant impact driver or when high-resolution 

climatic data is required. Moreover, it shows an application of the bioclimatic indices to wine 

grape productivity that is rarely used. 

3.5 SUMMARY 

In this chapter, the same methodology as in Chapter 1 is applied at the local scale, using 

different types of climate data: observations, reanalyses, regional climate model (RCM) and 

convection permitting model (CPM). In addition, three bioclimatic indices are added to the set 

used in Chapter 1. As for the time series, it is 19 years long and the analysis is carried out only 

on raw data in order to examine the long-term variability. The productivity data come from 

two Italian wine consortia, the 'Consorzio per la tutela del Franciacorta' (FRA) and the 

'Consorzio Del Vino Nobile di Montepulciano' (MON). The single regression method only 

exhibits statistically significant results in a small number of cases at the 95% confidence level. 

However, the multiple regression method consistently improves the productivity variability 

explained by the bioclimatic indices and give optimal results. The comparison between RCM 

and CPM indicates that the use of the convection permitting model has a limited impact on the 

results of this study. In this context, temperature is generally the main driver of wine grape 

production, and the added value of the CPM may be more appreciated when precipitation is a 

dominant factor.  

After examining the potential of bioclimatic indices to explain grape productivity variability at 

regional and local scales, the following chapter investigates the same issue using ecoclimatic 

indices calculated based on specific phenological phases instead of fixed calendar dates. This 

distinction may be important in the context of climate change that affects the phenological 

cycle of the grapevine. The analysis is carried out whit the observational dataset E-OBS at local 

scale over the FRA and MON area. 
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4.THE USE ECOCLIMATIC INDICES TO INVESTIGATE 
CLIMATE IMPACT ON WINE GRAPE YIELD AT LOCAL 
SCALE 

Abstract 

The impact of climate variability on wine grape yield is assessed using ecoclimatic indices 

tailored to the crop's specific life cycle stages during key phenological periods. These periods 

are selected through a validated phenological development model that accounts for various 

grape varieties. This study actively involves winegrowers and considers the unique 

characteristics of each study region, operating at a local scale with a focus on specific grape 

varieties. The yield data are provided by two Italian wine consortia, situated in Lombardia and 

Toscana, respectively. The ecoclimatic indices are correlated with grape yield data using single 

and multiple regression analyses. The study evaluates the different contributions of each 

ecoclimatic index to the yield formation process and quantifies the portion of total yield 

variability explained by these predictors, both individually and in linear combination. Given the 

limited existing literature on grapevine yield modelling, this paper introduces and discusses a 

set of ecoclimatic indices derived from current knowledge of climate's influence on grapevine 

development. Moreover, the methodology outlined here can be applied to future climate 

projections to investigate climate change and its potential impact on grape yield. 

4.1 INTRODUCTION 

Wine production, in quality and quantity, depends on a delicate balance between different 

climatic conditions: rainfall, sunshine, temperature, humidity, etc. (Laurent et al., 2021; Rienth 

et al., 2021). The development of the grapevine is mainly governed by air temperature, which 

determines the timing of the phenophase’s interval, a key aspect to produce high-quality wine 

(Jones & Davis, 2000; Pearce & Coombe, 2004). Temperature is also the main factor that 

regulates the sugar content and flavour of the berry (Van Leeuwen, 2010; Van Leeuwen & 

Darriet, 2016). While drought can lead to a decrease in production, rainfall, especially in spring, 

can also trigger pests and diseases that affect grape production and the overall quality of the 

berry (Boso et al., 2014; Salinari et al., 2006). Although of primary importance, climate is not 

the only factor influencing grape quality and yield, the concept of terroir encompasses many 
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other components, both environmental and cultural, such as soil characteristics and vineyard 

management practices (Bonfante et al., 2018; Spielmann & Charters, 2013). The link with 

terroir is strong in a country with a long-lasting wine growing tradition as Italy. In 2022, Italy 

was the world's leading wine producer, with 49.8 million hL, and the second-largest wine 

exporter, valued at 7.8 billion euros (OIV, 2022).  Furthermore, Italy is considered a climatic 

hotspot (Cos et al., 2022), and climate change could potentially present a challenge to the wine 

industry. 

Bioclimatic indices are a frequently used tool for evaluating the impact of climate on crops and 

crop yield. They are used to assess the suitability of a region for viticulture and are often linked 

to harvest dates to assess the impact of climate on vines development (Dalla Marta et al., 2010; 

G. C. Koufos et al., 2018). They are also used in conjunction with climate projections to study 

possible shifts in wine-growing areas due to climate warming (Moriondo et al., 2013; M. Santos 

et al., 2019). A different approach is proposed by Massano et al. (2023), who link bioclimatic 

indices to grape productivity data. The bioclimatic indices calculated on fixed calendar dates, 

also called agroclimatic indices, refer to theoretical occurrences of phenological phases. With 

global warming, the phenological timing is changing (Bernáth et al., 2021), which can limit the 

ability of agroclimatic indices to frame the impact of climate on crops, along with with the fact 

that they are not suitable for variety-specific studies (Moriondo et al., 2015). Another approach 

is the use of ecoclimatic indices, which are calculated based on the crop life cycle, during 

relevant phenological periods (Caubel et al., 2015). The ecoclimatic indices allow the 

characterisation of the climatic impact on crop growth and development, during the selected 

phenological period, or in days dedicated to specific cultural practices (harvest, pruning, etc). 

In this framework, crop models are essential to study the impact of climate on crops by 

integrating crop physiology with environmental conditions (Naulleau, Gary, Prévot, Berteloot, 

et al., 2022). This approach has been developed in numerous recent studies on cereal and other 

crops (Holzkämper et al., 2013; Le Gouis et al., 2020; Mkhabela et al., 2010), while recent works 

used ecoclimatic indices for studying the impacts of climate change on viticulture over French 

(Zito et al., 2023) and European (Sgubin et al., 2023) wine regions.  

There are also numerous studies investigating the impact of climate on grapes, linking large-

scale atmospheric patterns to grape phenology and quality (Dalu et al., 2013; Salinger et al., 

2015) or the impact of climate change on harvest date (Di Lena et al., 2019; Lena et al., 2012).  

These papers consider the suitability of grape production mixing the impact of climate on grape 

quality and quantity. While grape quality contributes strongly to wine industry revenue for 

premium wines, yield remains a driving factor for the economic viability of the wine industry 
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(Ashenfelter & Storchmann, 2016). The consequences of climate change have been however 

little considered. White et al., (2006)  suggested that extreme heat might affect negatively yield 

in the western USA, without however supporting these analyses with field calibration. Fraga et 

al., (2016), used the crop model STICS adapted to grapevine to simulate various variables (LAI 

- leaf area index, grapevine water, and nitrogen status, yield) for the past 1980-2005 (climate 

data reanalysis) and future (21st century projection) periods in western Europe. Parametrization 

with a single cultivar (Pinot noir), yield simulations showed discrepancies with observations, as 

cultivar, training systems, and regulations strongly vary between European wine producing 

regions. To ensure accurate modelling, it is important to validate models using multiple 

cultivars due to variations in phenological timing. Additionally, it is important to consider 

different geographic areas during validation. 

In this work, the impact of climate variability on grape yield is evaluated for two wine producing 

areas of Italy. Wine grape yield here indicate the amount of harvest collected per unit of surface 

area, expressed in either grape mass or wine volume units (Laurent et al., 2021). The areas 

considered are the Franciacorta wine region in Lombardia, northern Italy, and the 

Montepulciano area in Toscana, central Italy. The aim of this study is to better understand the 

relationship between climate and viticulture by linking ecoclimatic indices with grape yield data, 

to support the adaptation of the wine sector to climate change. This assessment uses 

phenological and water balance models to calculate ecoclimatic indices. The relationship 

between the ecoclimatic indices and grape yield data is explored by using both a single and a 

multiple regression approach. This research directly involves the winegrowers and considers 

the specificity of the areas of interest. The yield data are provided by two Italian wine consortia, 

'Consorzio per la tutela del Franciacorta' (FRA) and 'Consorzio Del Vino Nobile di 

Montepulciano' (MON). The climatic data used as input in the model are obtained from the E-

OBS gridded database of in situ observations. The use of the phenological development model 

allows the selection of the phenological periods more sensitive to the climatic conditions for 

each specific variety. Furthermore, to the best of the authors' knowledge, the here considered 

relationship between the ecoclimatic indices and grape yield in Italy has not been discussed in 

previous studies. 

4.2 DATA AND METHODOLOGY 

4.2.1 Yield data 

The yield data used in this study are provided by two Italian wine consortia: 'Consorzio per la 

tutela del Franciacorta' (FRA), and 'Consorzio Del Vino Nobile di Montepulciano' (MON) 

(Figure 4.2-1). The two consortia provided the area under vines in hectares (ha), the hectolitres 
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produced (hl) and the maximum percentage of the grape yield to be converted into wine (70%). 

In this analysis, the hectolitres provided are converted into quintals (q) using the maximum 

percentage allowed, and then the yield (q/ha) is calculated by dividing the quintals of grapes by 

the vineyard area. 

FRA, mostly known for sparkling wine, is a small (200 km2) winegrowing region in Lombardia, 

northern Italy. The consortium currently maintains three designations: Sebino IGT, 

Franciacorta DOCG and Curtefranca DOC, that before 2011 was knew as Terre di 

Franciacorta (https://franciacorta.wine/en/). This work focuses on the denomination Terre 

di Franciacorta, the red wine (T.FRA.Red) from 1997 to 2010 (14 years) and the wite wine 

(T.FRA.White) from 1997 to 2009 (13 years) (Figure 4.2 2). The area's climate is influenced by 

Iseo Lake, located at the northern border, which tempers the heat of the plain in summer and 

protects the area from northerly cold advections during winter (Leoni et al., 2019).  

MON territory is part of Toscana region in the centre of Italy. The consortium preserves three 

designations: Vino Nobile di Montepulciano DOCG, Rosso di Montepulciano DOC and Vin 

Santo di Montepulciano DOC. The area is characterized by a Mediterranean climate with hot 

and dry summers and mild and rainy winters (Costantini et al., 2013). The analysis is made on 

the aggregation of two denomination: Vino Nobile di Montepulciano DOCG, Rosso di 

Montepulciano DOC, for the period 1997-2019 (23 years), here indicated as MON.VN.R 

(Figure 4.2 2). 
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Figure 4.2-1: Study area 

The MON consortium provided yield data from 1989 to 2019, but after an exploratory analysis 

of the yield series, the first 8 years (1989-1996) are excluded. The mean of the yield data from 

1989 to 1996 is compared with the mean of the data from 1997 to 2019 and the results show 

significant differences in the mean (Figure A 4, Figure A 5 and Table A 13). A possible explanation 

lies in the variation in area observed in the data between the two periods (not shown), no 

further explanation or metadata is available from the Consortium. The authors decided to 

proceed with the analysis using the 1997–2019 time window. 
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Figure 4.2-2: the plot shows yield time series for Terre di Franciacorta – White (T.FRA.White) and Terre 

di Franciacorta – Red (T.FRA.Red); MON.VN.R is the result of the aggregation of “Vino Nobile di 

Montepulciano” and “Rosso di Montepulciano”.  

4.2.2 Climate observation dataset E-OBS 

The climatic data used in this study are extracted from the observational dataset E-OBS (v21), 

a gridded daily dataset covering Europe from January 1950 to the present day. The dataset was 

constructed using records from meteorological stations of the European National 

Meteorological and Hydrological Services (NMHSs) and other data holding institutions 

(Photiadou et al., 2017; Van Der Schrier et al., 2013). The horizontal grid resolution here used 

is 0.1 degrees in latitude and longitude, corresponding to approximately 11.1 km. The grid 

points of interest are selected based on the shape of the two consortia, and a weighted mean is 

calculated using the percentage of the grid point that overlaps the consortium area. The 

resulting climate data are then used as input to calculate ecoclimatic indices from phenological 
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and water balance modelling. Daily reference evapotranspiration and solar radiation were 

calculated using Hargreves formulae (George H. Hargreaves & Zohrab A. Samani, 1985). 

4.2.3 Phenological and water balance modelling and ecoclimatic indices 

Climate potential impact on yield was assessed by estimating the consequences of temperature, 

rainfall, solar radiation, and soil water availability on various stages of the reproductive cycle of 

grapevine. Grapevine yield at harvest on year N is established by a series of stages, from the 

inflorescence primordia formation within latent buds during the middle of the previous 

growing season (N-1) to the berries’ growth until harvest (Laurent et al., 2021; Li-Mallet et al., 

2015). Growing season N-2 should also be considered, as it might affect grapevine vigour on 

year N-1, which is correlated with inflorescence primordia formation and the number of latent 

buds (Rives, 2000). The model considered here accounts only for N-1 and N.  

The periods of interest were calculated from simulated grapevine phenological stages using the 

temperature related phenological modelling. Budburst (stage 07 on the BBCH scale, see 

Coombe, 1995) was calculated using the Smoothed-Utah/Wang & Engel model, as proposed 

and adapted to grapevine by Morales-Castilla et al. (2020), which accounts for cold effect on 

bud dormancy rise (starting on August 1st of the previous year) and heat positive impact on 

budburst occurrence. Flowering (BBCH65) and veraison (BBCH81) dates were calculated using 

the GFV - Grapevine Flowering Véraison model (A. Parker et al., 2013), which cumulates daily 

temperatures over 0°C from day of the year 60 (March 1st). Harvest (BBCH89) is not a 

phenological stage per se, as it is set by the grape grower or winemaker according to the type 

of sought product and the sanitary status of the grape. Harvest date has been estimated using 

the GSR – Grapevine Sugar Ripeness model (A. K. Parker et al., 2020), which cumulates daily 

temperatures over 0°C from day of the year 91 (April 1st) to simulate the date at which a given 

level of sugar level in grapes is reached. All three phenological models have been run using 

parameters adapted to grapevine varieties and sugar level at harvest adapted to each region (see 

Figure 4.2-3). Here, the following key periods for yield formation process were considered and 

established by means phenological modelling (Figure 4.2-3). 

During year N-1:  

- GrowSeas: the growing season period, from budburst (BBCH07) to harvest 

(BBCH89, here defined as “theoretical maturity”, see below). A severe frost event 

during the growing season N-1, typically in Spring, is reported by grape growers 

to favour yield on the following year. This is the case in France for vintages 1981, 
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1991, 2017 and 2021 (frost) and 1982, 1992, 2018 and 2022 (high yield). The 

hypothesis that frosts damage enhances yield on the return crop has not been 

explored by scientific research. The potential impact of frost damage intensity was 

assessed through the utilization of a frost stress index, computed as the cumulative 

number of minimum temperatures falling below a specified threshold for each 

cold event occurring subsequent to budburst. While grapevine tissues after 

budburst can resist to temperature up to -2°C (Bois et al., 2023), here the threshold 

of +2°C was used based on the hypothesis that negative temperature are probably 

reached in some vineyards of the wine producing region when E-OBS climate data 

provide a value at 2°C or below.  

- Fertility: a period starting 15 days before flowering (BBCH65) and lasting until 

15 days before veraison (BBCH81), during which inflorescence primordia forms 

in the buds (Li-Mallet et al., 2015), i.e. “bud fertility”. Mean and sum of solar 

radiation were considered during this period, because light intensity is a strong 

exogenous driver of bud fertility (Burrnose, 1970). When available soil water for 

grapevine falls below 40% of total soil water capacity, water deficit negatively 

affects bud fertility (Naulleau, Gary, Prévot, Berteloot, et al., 2022). The average 

relative soil water content, also called “fraction of transpirable soil water” (FTSW), 

was calculated using the water balance model proposed by Lebon et al., (2003) and 

described below.  

During year N:  

- GrowSeas: during the growing season of year N, the consequence of spring frost 

and extreme heat on yield were considered. Frost damage was assessed by the frost 

stress index as defined above. Extreme heat was considered as the sum of 

maximum temperatures over 35°C, a threshold above which sunburns can be 

observed on grapes (Hulands et al., 2014); 

- Postbudburst: a 20-day period after budburst (BBCH07), during which cool 

temperature might reduce the number of inflorescences (Pouget, 1981). The 

average minimum temperature during this period was calculated. 

- Diseases: corresponds to the period during which powdery and downy mildews, 

major grapevine diseases (Bois et al., 2017), are likely to occur. This period was set 

from budburst (BBCH07) to 15 days after full bloom (BBCH65), during which 

both climate conditions and grapevine sensibility are suitable for mildew 

epidemics (Gadoury et al., 2012; Gessler et al., 2011). During this period, the 
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hydrothermal index proposed by Branas et al. (1946)  adapted by Fraga et al. (2013)  

was here modified as the cumulated product of average temperature and 

precipitation, under the hypothesis that warm and humid conditions favor the 

occurrence of diseases. 

- Harvest: this period has been defined as covering 10 days before and 10 days after 

theoretical grape maturity (BBCH89, see below). During the fruit ripening period, 

rainfall might either favour grey mould (Molitor et al., 2016) or increase yield by 

increasing berry size. Consequently, the sum of precipitation during this period 

has been considered as an explaining variable for yield modelling. 

- Pollen: coincides with the flowering-onset, which starts 5 days before full bloom 

(BBCH65) and lasts 15 days after. During this period, rainfall can wash out the 

pollen, failing fecundation. The sum of cumulated rainfall, as well as the average 

number of rainy days (precipitation > 1 mm), were considered. Rapid growth of 

the pollen tube is a determinant of ovary fertilization. Pollen tube growth is 

strongly governed by temperature (Staudt, 1982). The effect of temperature was 

assessed by calculating the average daily heat units during the Pollen period, using 

Wang and Engel’s model (Wang & Engel, 1998) as adapted to grapevine by García 

de Cortázar-Atauri et al. (2010).  

- FloMat corresponds to the period between flowering and maturity (BBCH65 - 

BBCH89) during which the fruit develops. During this period, water deficit 

strongly affects yield (Gambetta et al., 2020). Grapevine water status was assessed 

through an average water deficit stress index, defined as 1 minus the grapevine’s 

relative stomatal conductance estimated from the water balance model proposed 

by Lebon et al. (2003) and described below. 

Grapevine water status has been simulated using Lebon et al. water balance model (Lebon et 

al., 2003). Two outputs provided by the model have been considered. The first output is the 

fraction of transpirable soil water, which consists of the ratio between available soil water 

(ASW) and the total transpirable soil water (TTSW). TTSW varies strongly according to plant 

root system and soil physico-chemical characteristics. Here, it has been set at 150 mm. The 

second output is grapevine relative stomatal conductance (isv), which expresses the degree of 

stomata “openness” directly related to FTSW, using the relationship proposed by Pieri & 

Gaudillere, (2005). When isv = 1, stomata are closed, hence hydric stress is maximum. When 

isv = 0, stomata are open, hence there is no water deficit. 

The water balance model separates grapevine transpiration and soil evaporation according to 

solar radiation interception by grapevine canopy. Radiation interception has been estimated 
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using Riou et al. (1989) geometrical model that simplifies the grapevine row canopy as a 

parallelepiped. Grapevine canopy growth has simulated a linear relationship between the 

growth of the row (vertical, horizontal, and canopy porosity) and growing degree days over 

10°C, from budburst (BBCH07) to 15 days after full bloom (BBCH65). Row azimuth was set 

to 0° (rows oriented South to North for all considered regions) and minimum porosity was set 

to 0.25 (25% of gaps in the canopy). Row maximum height, maximum width, and distance 

between rows were set to 1, 0.4, and 2 meters, respectively.  

 

Figure 4.2-3: Scheme of the periods of interest for the computation of indices. The icons serve as a 

schematic representation of the ecoclimatic indices. 

This work focuses on seven different periods, over which 13 ecoclimatic indices are computed 

by the agro-model. These indices, defined above and summarized in  

 Table 4.2.1, are considered the most relevant to assess the impact of climate variability on 

winegrape yield. As mentioned above, vines are perennial plants whose productivity is 

influenced by the climatic conditions of the years leading up to a specific harvest. To account 

for this effect, 4 of the 13 indices are based on the previous year (N-1), while the remaining 9 

are based on the current year (N) of the harvest under investigation. 
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 Table 4.2.1: list of ecoclimatic indices and their definitions. The orange (blue) background indicates an 

expected positive (negative) correlation with yield. 

Year Period Index Detail COD. 

N-1 Fertility sum.rg 
The sum of solar radiation during the period "fertility" 

(year N-1) 
eco1.N-1 

N-1 Fertility rg 
Mean of solar radiation during the period "fertility" 

(year N-1) 
eco2.N-1 

N-1 Fertility ftsw 
Fraction of Transpirable Soil Water average during the 

period “fertility” (year N-1) 
eco3.N-1 

N-1 GrowSeas frost.stress.index.mThresN1 
The sum of minimum temperature below a fixed 

threshold (year N-1) 
eco4.N-1 

N GrowSeas frost.stress.index.mThres 
The sum of minimum temperature below a fixed 

threshold (Thres = 2 °C)  
eco5.N 

N GrowSeas heat.stress.index The sum of maximum temperature above 35 °C eco6.N 

N Pollen sum.rr The sum of precipitation during the period "pollen" eco7.N 

N Pollen freq.nrr1 
The number of rainy days (rain > 1 mm) during the 

period "pollen" 
eco8.N 

N Pollen mean.WE 

Average of Wang and Engel daily heat units adapted by 

provided in García de Cortázar-Atauri et al., (2010) 

during the period "pollen" 

eco9.N 

N Disease sum.Hyl 

The Hydrothermal Index modified from Branas (1946) 

as the product of the sum of daily precipitation per the 

average daily temperature during the period “pollen” 

eco10.N 

N Harvest sum.rr The sum of precipitation during to harvest eco11.N 
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N FloMat mean.isv 

The mean relative stomatal conductance, an indicator 

of hydric deficit (water deficit related stress is maximum 

when isv = 0) 

eco12.N 

N Postbudburst tn Average minimum temperature after post-budburst eco13.N 

 

4.2.4 Computation of eco-indices and parameters analysis 

In this work, two geographical areas are considered, i.e. FRA and MON, and three 

denominations are analysed (T.FRA.White, T.FRA.Red, MON.VN.R). Those choices are 

determined by the data availability.  

FRA provided data on the denominations Terre di Franciacorta Rosso (T.FRA.Red) and Terre 

di Franciacorta Bianco (T.FRA.White). According to the information provided by the 

consortia, the varieties authorised by the denomination laws are Chardonnay, for the white 

wine, Cabernet Sauvignon, and Merlot for the red (Figure 4.2-4).  

MON.VN.R is mainly made with Sangiovese grapes (at least 70%), while the remaining 30% 

can be made with other red grapes authorised for harvesting in Toscana. As previously 

described, the agro-model can be tailored to better suit the requirements of the case study. The 

Sangiovese variety is not available in the agro-model, so the simulation for MON.VN.R uses 

Merlot, Syrah, and Cabernet Sauvignon, which are allowed in Toscana and are agronomically 

similar to Sangiovese (Palliotti et al., 2018)(Figure 4.2-4).  

The yield data refer to specific denominations that are a mix of more types of grapes, for this 

reason, a sensitivity analysis of the model to the “cultivar” and “maturity sugar content” 

parameters is performed.  
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Figure 4.2-4: Scheme of the grape varieties considered in the study. From the left side there are the two 

geographic regions of interest, followed by the respective denomination provided by the consortia (FRA 

and MON). The last two column indicates which variety (Chardonnay, Merlot, Cabernet Sauvignon and 

Syrah) and which sugar content is used to set the agro-model. 

4.2.5 Correlation with yield data 

After the sensitivity analysis, the ecoclimatic indices computed by the agro-model are correlated 

(Spearman method) with yield data to investigate their possible relationship. In FRA the 

ecoclimatic indices obtained running the agro-model using Chardonnay 170 g*L-1 is correlated 

with T.FRA.White yield data, while the indices obtained for FRA using Merlot and Cabernet 

Sauvignon are correlated whit T.FRA.Red. For the MON area, the correlation is computed for 

MON.VN.R, for each of the varieties considered (Figure 4.2-4). 

To consider the interplay that the different indexes can have on wine production, a multivariate 

analysis is conducted. Multiple regression linear models are elaborated by combining up to 3 

ecoclimatic indices as predictors to explain the yield of each series (Harrell et al., 1984). All 

possible combinations are tested, and each model performance is assessed by leave-one-out 

cross-validation (LOOCV): one year of the yield series is iteratively removed to elaborate a 

training data set from a multiple linear regression model is fitted and then the yield is predicted 

for the year that has been removed. Once this cross-validation has been performed for each 

year of the series, predicted data are compared to observed data calculating the model efficiency 

(Nash & Sutcliffe, 1970). Finally, the model providing the lowest efficiency to predict yield is 

selected. 
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4.3 RESULT AND DISCUSSION 

4.3.1 Parameters analysis of phenological model 

 

The ecoclimatic indices are computed in the FRA (Figure 4.3-1) and MON (Figure 4.3-2) areas 

using different settings. For the variety Chardonnay in FRA (white), two different values for 

the sugar content at maturity are tested (170 gL-1 for sparkling wines and 210 g*L-1 for still 

wines), the differences between them are shown in Figure 4.3-1 for the eco11.N and eco12.N 

indices (black and green lines). Using lower sugar content in the GSR model (170 g*L-1), the 

simulated harvest date is closer to that given by the consortium, usually around 15 August, than 

using 210 g*L-1. This result is consistent with the fact that sparkling wines are mostly produced 

with the appellation Terra di Franciacorta white, in the period considered.  Simulation for 

Chardonnay with 210 g*L-1 sugar content at maturity is therefore excluded from further 

analysis. Meanwhile, the simulations for the varieties Cabernet Sauvignon and Merlot in FRA 

are carried out with the sugar content at maturity set at 210 g*L-1 and included in the second 

part of the analysis. The variety harvested in MON area is Sangiovese, a cultivar not available 

in the budburst model (from Morales-Castilla et al., 2020), thus the parameters analysis is made 

with Cabernet Sauvignon, Merlot and Syrah (Figure 4.3-2) that are similar to the Sangiovese vines, 

from an agronomic point of view.  

For both areas (FRA and MON), the differences between the varieties are observed in eco4.N-

1 and eco5.N, related to frost stress in years N-1 and N, and eco6.N, related to heat stress in 

year N. The other two indices that differ the most are eco11.N and eco 13.N, related to rainfall 

close to harvest and minimum temperature after bud burst, respectively. Frost and heat days 

are calculated between budburst and harvest. Frost simulated potential damage (frost stress 

index) depends on phenological features of budburst, that change between varieties: from 0 to 

15 days between Chardonnay,  the earliest variety used here, and Cabernet-Sauvignon, the latest 

variety in FRA (and 0-14 days in MON) (as observed in our simulations and confirmed by 

phenological earliness reported in the French catalogue of Grapevine Varieties 

www.plantgrape.fr). Hence, a difference in frost stress index according to the variety was 

expected and is in line with a previous comparison of grapevine sensitivity frost risk estimation 

using phenological modelling (Bois et al., 2023).  It is also the case for minimum temperature 

following budburst (eco13.N index). The larger sensitivity of the heat stress index to cultivar 

phenological parameters suggests that varieties reaching maturity earlier (and harvested earlier) 

might avoid heat waves occurring in the late summer at the end of August or in September. As 

harvest dates might vary significantly according to variety and sugar level at which grapes are 

considered ripe (170 or 210 g*L-1), eco11.N (rainfall close during harvest period) changes 

http://www.plantgrape.fr/
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dramatically. As highlighted by (Bécart et al., (2022), the ideal conditions for grape ripening are 

expected to change in response to rising temperatures, hence the need to consider ecoclimatic 

indices calculated close to harvest. They also highlight the importance of characterising the 

intermediate phenological stages that can play an essential role in the yield formation process. 
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Figure 4.3-1: for FRA area, time series of the ecoclimatic indices computed with phenological parameters 

set according to each variety.  
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Figure 4.3-2 for MON area, time series of the ecoclimatic indices computed with phenological parameters 

set according to each variety.  
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4.3.2 Ecoclimatic indices and yield data correlations 

4.3.2.1 Single regression approach 

The Spearman correlation is computed on a subset of cases selected based on the parameters 

analysis. For the FRA area, the yields of the T.FRA.White denominations are correlated with 

the ecoclimatic indices calculated with Chardonnay (170 g*L-1) for the period 1997-2009. 

Meanwhile, the yield data of the T.FRA.Red denominations are correlated with the ecoclimatic 

indices calculated with Merlot and Cabernet-Sauvignon for the period 1997-2010. For the 

MON area, the yield data of MON.VN.R for the period 1997-2019 are correlated with the 

ecoclimatic indices calculated for the varieties Merlot, Cabernet Sauvignon, and Syrah (Figure 

4.2-4). 

The eco3.N-1 (average fraction of transpirable soil water, FTSW, during fertility period on year 

N-1) shows a significant correlation (p < 0.04) with the grape yield for the denomination 

T.FRA.White Chardonnay (Figure 4.3-3). The positive relationship between eco3.N-1 and the 

yield is consistent with observations made between FTSW and yield in South of France 

(Naulleau et al., 2022), as water deficit during latent bud formation (fertility period) leads to the 

formation of fewer grapes during the following year. The study conducted by Yang et al., (2022) 

investigated the impact of water stress on yield loss in various European wine regions, including 

in Italy, focusing on the phenological period between flowering and veraison, which is not 

considered in this work. However, their results align with what is shown here, namely that 

higher water stress leads to higher yield loss. For the second denomination used in FRA, 

T.FRA.Red, significant, and positive correlations are observed for the eco5.N index (frost risk 

index on year N) with both varieties tested (p < 0.03 for both varieties) (Figure 4.3-4). This is 

unexpected because frost risk in the year N is supposed to damage yield. Eco5.N exhibits 

however null values for most of the considered vintages except for 1997, 2003, and 2007. In 

2003 for Merlot and 2007 for Cabernet Sauvignon, eco5.N was very high, indicating a binary 

behaviour (it zero or ten for Merlot) of this ecoclimatic index, not observed for MON, and it 

is possible that these values are driving significant Spearman coefficients. 

For MON.VN.R, eco7.N, eco8.N and eco10.N (Figure 4.3-5) are positively correlated with yield 

for all the variety tested. The eco7.N index is the sum of precipitation during the pollen period, 

which can be detrimental to yields because the pollen is washed away by rain and fewer flowers 

are fertilised, phenomenon also known as coulure. The eco8.N describes a similar phenomenon 

of coulure but accounts for the frequency of rainfall during the period pollen. The hydro-thermal 

index (eco10.N) is a combination of the rate of rainfall and the temperature during the growing 

season to determine the risk of downy mildew to the grapevine (Branas et al., 1946; Tonietto 
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& Carbonneau, 2004). Therefore, a high value of eco10.N indicates a high risk of disease 

occurrence in the vines, that can lead to a lower yield. Thus, a negative correlation was expected 

while positive ones are observed for all three indices. The climatic conditions of the area, which 

are hot and dry (Fratianni & Acquaotta, 2017), may be responsible for the unexpected positive 

correlations between yield and eco7.N, eco8.N, and eco10.N indices. This implies that, in an 

area where rainfall is usually scarce, precipitation can have a positive impact on yield, and a dry 

area may be less susceptible to fungal disease. Indeed, a positive correlation have been found 

during fruit development on the berry weight of the Grenache variety with humidity and rainfall 

frequency in the semi-arid Southern Rhône area in France (Bécart et al., 2022). 

 

Figure 4.3-3: T.FRA.White, correlation coefficients between grape yield and ecoclimatic indices. Full circle 

represents statistically significant results (p<=0.05).  
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Figure 4.3-4: T.FRA.Red, correlation coefficients between grape yield and ecoclimatic indices. Full circle 

represents statistically significant results (p<=0.05). 
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Figure 4.3-5: MON.VN.R, correlation coefficients between grape yield and ecoclimatic indices. Full circle 

represents statistically significant results (p<=0.05). 

 

4.3.2.2 Multi regression approach 

Because yield formation is the results of the combination of climate conditions at various stages 

of grapevine reproductive cycle, multiple linear regression modelling combining up to three 

variables has been tested. The methodology adopted here is similar to that of J. A. Santos et 

al., (2011), who used a multivariate linear regression model to build a statistical grapevine yield 

model. However, they used only temperature and precipitation monthly data, whereas here, 

ecoclimatic indices are used to conduct more comprehensive work. The multi-regressive 

model’s performance is compared to the single regression approach. The adjusted Pearson’s 

determination coefficient R² between observed and predicted yield (by means of leave -one-

out crosse validation procedure), is computed, and the variance explained by the model is 

compared with the maximum significant variance obtained with the single regression approach 

(Table 4.3.3) (Massano et al., 2023).  
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Table 4.3.1: predictor and coefficients of the multi-regressive model for T.FRA.White and T.FRA.Red. In 

the firs column are reported the denomination and the period considered, in the second column there are 

the variety and the Adjusted R squared. In the remaining column are reported the predictor of the model 

and their coefficients. 

T.FRA.White CHARDONNAY Int. 

ftsw - Fertilty  

(eco3.N-1) 

  

1997-2009 Adj. R² =0.44 5.72 80.55   

T.FRA. Red MERLOT Int. 
heat.stress.index - 

GrowSeas (eco6.N) 

mean.isv - FloMat 

(eco12.N) 

tn - Postbudburst 

(eco13.N) 

1997-2010 Adj. R² =0.58 136.62 -1.61 -48.99 -3.54 

T.FRA. Red 
CABERNET 

SAUVIGNON 
Int. 

sum.Hyl – Disease 

(eco10.N) 

sum.rr - Harvest 

(eco11.N) 

tn - Postbudburst 

(eco13.N) 

1997-2010 adr. R² =0.56 128.73 -0.01 -0.09 -3.39 

 

Table 4.3.1 shows the coefficients of the multi regression, and the corresponding adjusted R², for 

T.FRA.White for Chardonnay and T.FRA.Red for Merlot and Cabernet-Sauvignon.  

For T.FRA.White (Figure 4.3-6), the multi-regressive model selected through the LOOCV 

criterion leads to the selection of only one variable: eco3.N-1, i.e. the fraction of transpirable 

soil water during the previous year (N-1), which has a positive coefficient, suggesting a positive 

influence on yield. The same result has been obtained with the single regression analysis. The 

predicted data are compared to the observed data in Figure 4.3-6 b, and they show good 

agreement, explaining up to 32 % of the series variance (Table 4.3.3). The year 2003 is predicted 

to have a higher yield than observed. This difference may be due to spring frost and heat related 

damage. In 2003, frost and heat stress indices are high (ecoclimatic indices eco5.N et eco6.N 

in Figure 4.3-1, respectively) suggesting indeed potential negative impact on grape production. 





 

 

97 

97 

a) 

 

b) 

 

Figure 4.3-6: T.FRA.White – Chardonnay 170 g*L-1 1997-2009, panel a) scatter plot of predicted vs observed 

yield, panel b) time series of predicted (pink) and observed (blue) yield. 

The predictor selected for the T.FRA.Red denomination used with Merlot variety (Figure 4.3-7) 

are eco6.N, eco12.N, and eco13.N, all with negative coefficients. The eco6.N index represents 

the heat stress during year N, and a negative coefficient suggests that extreme heat leads to 

reduced yield, which is fully consistent with data reported from a large survey after strong heat 

waves in Australia (Webb et al., 2009). Eco13.N is the minimum temperature after budburst. 

The literature concerning the effect of temperature on flower differentiation on grapevine 

(Pouget, 1981) reported, for Merlot and Cabernet-Sauvignon, a clear positive effect of low 

temperatures (12°C) after budburst on the total number of flowers carried by vines, compared 

to high temperature (25°C). The negative coefficients observed for eco13.N support these 

observations. On the other hand, the eco12.N index represents the mean stomatal 

conductance. A low value indicates higher stress on the plants, which leads to lower yields. 

Therefore, a positive correlation is expected in this case, but a negative one is obtained here, 

suggesting that water deficit favours higher yield. Similar results are obtained for the Cabernet 

Sauvignon variety (Figure 4.3-8), where the selected predictors are eco10.N, eco11.N and 

eco13.N, all of which have negative coefficients. The hydrothermal index eco10.N is related to 

the risk of disease, which has a negative impact on yield. Eco11.N represents the accumulated 

rain close to harvest time, which can trigger a grey mould infection resulting in less yield. Lastly, 

as for the case of Merlot, the eco13.N the negative coefficient observed in the model for 

Cabernet-Sauvignon suggests a negative impact on yield of increasing minimum temperatures 

around budburst, possibly though the number of produced flowers, as explained above.  
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a)  b)  

Figure 4.3-7: T.FRA.Red– Merlot 1997-2010 panel a) scatter plot of predicted vs observed yield, panel b) 

time series of predicted (pink) and observed (blue) yield. 

 a)  b)  

Figure 4.3-8: T.FRA.Red – Cabernet-Sauvignon 1997-2010 panel a) scatter plot of predicted vs observed 

yield, panel b) time series of predicted (pink) and observed (blue) yield. 

Regarding the area of MON, the results obtained from the multi-regression analysis for 

MON.VN.R confirm those obtained from the single regression analysis (Figure 4.3-5).  

Table 4.3.2 shows the coefficients and Adj. R² of MON.VN.R for the tree varieties selected. 

Table 4.3.2: predictor and coefficients of the multi-regressive model for MON.VN.R. In the first column 

are reported the denomination and the period considered, in the second column there are the variety and 

the Adjusted R squared. In the remaining column are reported the predictor of the model and their 

coefficients. 
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 MON.VN.R 
CABERNET 

SAUVIGNON 
Int. 

sum.Hyl – 

Disease 

(eco10.N) 

mean.isv - FloMat 

(eco12.N) 

frost.stress.index.mThresN1 

–  GrowSeas (eco4.N-1) 

1997-2019 Adj. R² =0.37 50.52 0.01 30.88 0.21 

MON.VN.R MERLOT Int. 

sum.rg – 

Fertilty 

(eco1.N-1) 

sum.Hyl – Disease 

(eco10.N) 

mean.isv –  FloMat 

(eco12.N) 

1997-2019 Adj. R² =0.37 26.40 0.05 0.01 30.27 

MON.VN.R SYRAH Int. 

sum.Hyl – 

Disease 

(eco10.N) 

tn –  Postbudburst 

(eco13.N) 

frost.stress.index.mThresN1 

–  GrowSeas (eco4.N-1) 

1997-2019 Adj. R² =0.39 49.14 0.01 33.39 0.24 

 

When using Cabernet Sauvignon parameters for phenological modelling, the multi-regressive 

model's Adj. R² value is 0.37, suggesting limited predictive ability (Figure 4.3-9). The selected 

indices are eco10.N, eco12.N, and eco4.N-1, all with positive coefficients (Table 4.3.2). The 

index related to disease risk (eco10.N) is expected to be negatively related to yield as confirmed 

by Fraga's (Fraga et al., 2014) logistic model in Portugal (Fraga et al., 2014). However, in this 

case, the coefficients show a positive relationship. This may be due to the dryness of the area, 

as discussed in the single regression analysis section. The coefficients for eco12.N (mean 

relative stomatal conductance during the FloMat period) and eco4.N-1 are positive, as expected 

since high values of the former indicate low deficit water, and the latter frost stress in the 

previous year (N-1), which leads to good yield in the following year, as empirical observations 

show.  When using Merlot, the multi-regressive model has again an adj. R² value of 0.37 (Figure 

4.3-10. The selected indices are eco1.N-1, eco10.N, and eco12.N, all with positive coefficients 

(Table 4.3.2). As previously discussed for Cabernet-Sauvignon, the hydrothermal index 

(eco10.N) is expected to have a negative coefficient. The sum of solar radiation during the 

fertility period in year N-1 (eco1.N-1) and mean relative stomatal conductance during fruit 

development and ripening FloMat period (eco12.N) are expected to have a positive impact on 

yield, as captured by the positive coefficient of the multi-regressive model (Table 4.3.2). The 
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multi-regressive model produced similar results for the Syrah variety, selecting the predictors 

eco10.N, eco13.N, and eco4.N-1 (Figure 4.3-11). The positive coefficient of eco4.N-1 is 

expected since frost stress in N-1 can led to a good yield in year N, while the positive 

coefficients of eco10.N and eco13.N, although confirming previous results, are not expected. 

The counterintuitive result may be due to the hot and dry climate of the area, as already 

underlined previously. 

a)  b)  

Figure 4.3-9: MON.VN.R - Cabernet-Sauvignon 1997-2019 panel a) scatter plot of predicted vs observed 

yield, panel b) time series of predicted (pink) and observed (blue) yield. 

a)  b)  

Figure 4.3-10: MON.VN.R - Merlot 1997-2019 panel a) scatter plot of predicted vs observed yield, panel b) 

time series of predicted (pink) and observed (blue) yield. 
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a)  b)  

Figure 4.3-11: MON.VN.R - Syrah 1997-2019 panel a) scatter plot of predicted vs observed yield, panel b) 

time series of predicted (pink) and observed (blue) yield. 

In general, for T.FRA.White, the single regression explains a higher portion of yield variability 

compared to multiple regression. For T.FRA.White using Chardonnay, the index with the 

highest variance obtained with the single regression is eco3.N-1 (36%), which is also the only 

index considered by the multi-regressive model. In contrast, for T.FRA.Red, the multiple 

regression outperforms the single regression approach. (Table 4.3.3). The only significant result 

for the single regression is a negative correlation with the eco10.N (hydrothermal index during 

the disease period) for both varieties (Figure 4.3-4). The multi-regressive model accounts for 

the impact of heat and water stress on yield, selecting as predictors eco6.N, eco11.N, eco12.N, 

and eco13.N (Figure 4.3-7), increasing the overall representation of the yield variability by 18% 

(Merlot) and 13% (Cabernet Sauvignon Table 4.3.3).  For MON.VN.R, the multi-regressive 

approach does not improve the single regression significantly. There is a slight improvement 

observed for Cabernet Sauvignon (1%) and Syrah (3%), while there is a decrease of 2% for 

Merlot (Table 4.3.3) 

Table 4.3.3: This table compares the variance between single and multi-regression approaches.  It includes 

the determination coefficient (Coef.) and p-value (p), along with the period on which the correlations are 

computed (indicated by the 'Period' column). “Var %” indicates the percentage of yield variance explained 

by the model. “MaxVar % SR” represents the explained variance associated with the maximum significant 

single regression (SR), while “Var.diff %” is the difference between “MaxVar % SR” and “Var %” in 

percentage. 
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case Coef. p Period Var % MaxVar % SR Var.diff % 

T.FRA.WHITE 

Chardonnay 170 g*L-1 
0.57 0.05 1997-2009 32% 36% -4% 

T.FRA.RED Merlot 0.71 0.01 1997-2010 50% 32% 18% 

T.FRA.RED Cabernet 

Sauvignon 
0.67 0.01 1997-2010 45% 32% 13% 

MON.VN.R Cabernet 

Sauvignon 
0.53 0.01 1997-2019 28% 27% 1% 

MON.VN.R Merlot 0.50 0.01 1997-2019 25% 27% -2% 

MON.VN.R  Syrah 0.55 0.01 1997-2019 30% 27% 3% 
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4.5 CONCLUSION 

The impact of climate variability on yield is assessed using ecoclimatic indices and applying 

single and multiple regression analyses. The advantage of using ecoclimatic indices is the 

possibility to observe plant stress at specific stages of plant development. Working at the local 

level, with data collected by consortia, allows a tailor-made analysis for specific varieties and 

the direct involvement of winegrowers, who can provide information on the specific needs of 

their region and cultivation. 

This study connects ecoclimatic indices to yield through single and multiple regression. 

However, Shanmuganathan et al. (2010) for New Zealand, proposes a more complex approach 

that uses data mining techniques. Their assessment also considers grape quality, which is not 

addressed in this work. The paper addresses some of the issues mentioned by Laurent et al., 

(2021) regarding yield assessment. Specifically, the agro-model used can account for site-

specific phenomena occurring during the yield formation process. Additionally, a multi-

regressive model serves as the basis for constructing an eventual composite yield index that can 

be used for modelling future yields. To achieve this, it is important to strengthen the 

involvement of wine consortia and stakeholders, as suggested by Naulleau, Gary, Prévot, 

Berteloot, et al., (2022) 

Modelling grapevine yield using climate data is challenging, specifically for wine producing 

regions in protected appellation areas (European AOP), where yield limitation might be set in 

the regulation rules of each appellation. Besides, winegrapes are cultivated in a large range of 

climate conditions (Bois et al., 2016; Puga et al., 2022), where climate constraints on yield differ: 

drought in semi-arid climates (Bécart et al., 2022; Naulleau, Gary, Prévot, Berteloot, et al., 2022) 

and frost and diseases in humid wine producing regions (Cradock-Henry & Fountain, 2019; 

Gustafsson & Mårtensson, 2005; Shaw, 2017). Furthermore, grapevine yield is the result of 

phases that take place during at least one and a half years, and the consequences of climate 

during each phase might be either progressive (e.g. grapevine water deficit impact on berry size) 

or sharp (e.g. damage produced by hail or severe winter cold or spring frost events).  Hence 

the use of linear models combining only up to 3 explanatory variables is probably too simple 

to establish a fine prediction of yield. However, the use of more complex modelling 

(polynomial regression, general linear models, or machine learning algorithms such as Random 

Forest or neural network, etc.) was considered inappropriate because of the small size of the 

data sample (12 to 22 years) available for each wine producing region.  

Although this study was conducted at a local scale using E-OBS data at a resolution of 11.1 

km, it is possible that a higher resolution could improve the performance of the phenological 
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and water balance modelling and enhance the representation of environmental conditions. 

Furthermore, it is recommended to explore the use of climatic data at a convection-permitting 

scale to investigate if a more accurate representation of the precipitation field can affect the 

ecoclimatic indices and their correlation with grape yield. 

Despite these numerous limitations (coarse resolution climate data and limited yield history), 

the modelling allowed to explain 25 to 50% of the variance of the yield, depending on the 

region and product considered, indicating different explanatory ecoclimatic indices according 

to the type of region and product considered. Literature concerning yield modelling for 

grapevine products is rare, and this paper identifies a series of ecoclimatic indices, based on 

current knowledge of the impact of climate on grapevine biological traits, as promising 

candidates for yield modelling.  

The same methodology can be applied to climate model data and calculate the ecoclimatic 

indices using future climate projections to investigate environmental change and its potential 

impact on grape yield. 

4.6 SUMMARY 

This study connects ecoclimatic indices to productivity through single and multiple regression. 

The agro-model used can account for site-specific phenomena occurring during the yield 

formation process, and type of cultivar. The modelling explains 25-50% of the productivity 

variance based on region and product.  Different ecoclimatic indices were found to be 

explanatory depending on the region and product type. The described methodology can be 

applied to climate model data to calculate ecoclimatic indices, which can help investigate 

potential environmental changes and their impact on grape yield in the future.  

To investigate the effect of climate variability and change on grape productivity, both 

bioclimatic and ecoclimatic indices are necessary tools. Chapter 3 aims to provide a 

comprehensive understanding of how to approach the problem. Additionally, the methodology 

discussed in the first three chapters serves as a basis for the development of climate services, 

such as the service discussed in the following chapter. Chapter 4 discusses the proposal of a 

fair price for utilising a particular climate service based on its accuracy. The methodology 

presented can be generalised and applied in other regions, although the focus is on Portugal 

due to data availability. 
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5.AN EFFICIENCY FEE FOR CLIMATE SERVICE - 
VALUATION OF CLIMATE SERVICES FOR 
VITICULTURISTS: TACKLING FUNGAL DISEASES 

Abstract 

Viticulturists developing adaptation strategies to mitigate the impact of climate change, which 
affects a grapevine’s physiology and wine typicity, can benefit from climate services. Climate 
services translate physically based variables, such as temperature and precipitation, into 
actionable, decision relevant bioclimatic indicators, such as Spring Rain, Heat Stress Days, and 
Warm Spell Duration. These bioclimatic indicators enable the mitigation of fungal diseases, 
specifically downy and powdery mildew, as well as sunburn. Accurate seasonal forecasts of 
these bioclimatic indicators can help farmers with viticulture, labor, and stock management, as 
well as improve the yield and value of wine-quality grapes. Seasonal forecasts of these indicators 
are available on the MED-GOLD project’s dashboard. This study determines an annual service 
fee to access these forecasts on the dashboard. The annual fee accounts for the seasonal 
forecast accuracy over part of the Douro wine region of Portugal, as well as the potential 
savings and losses of micro (≤ 1 ha) holding grape growers. The revenue generated from this 
climate service fee exceeds the cost of dashboard maintenance by nearly 10 times, even with a 
fee which is less than half of the potential savings of the micro holding farmer. 

5.1 INTRODUCTION 

5.1.1 Practical Implications 

Seasonal forecasts and climate projections have the potential to help farmers anticipate 
upcoming needs and devise plans for a more resilient, sustainable, and efficient future (Born et 
al., 2021; Buontempo et al., 2020; Vaughan et al., 2019; Wiréhn, 2024). Traditionally, these 
forecasts and projections included only essential climate variables, such as temperature and 
precipitation. The forecasts and projections did not include relevant bioclimatic variables, such 
as Spring Rain, Heat Stress Days, and Warm Spell Duration, which are needed to make 
agricultural decisions. This problem was compounded by the fact seasonal forecasts and climate 
projections are not easily accessible, both in terms of understanding and use for farmers. To 
tackle these problems, the European Union funded the MED-GOLD project 
(https://www.med-gold.eu/) through its Horizon 2020 research and innovation programme. 
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The MED-GOLD project ran from December 2017 until May 2022. As part of the MED-
GOLD project, a simple-to-understand and easy-to-use dashboard (https://dashboard.med-
gold.eu/) was created. The MED-GOLD Dashboard covers three time periods: the historical 
climate (1979 - 2020), seasonal climate forecasts (1993 - 2021), and long-term climate 
projections (2031 - 2060; 2071 - 2100) (Dell’Aquila et al., 2023). The MED-GOLD Dashboard 
provides essential climate variables, as well as bioclimatic indicators, for three key agricultural 
sectors of the Mediterranean, namely grapes, olives, and durum wheat. For each sector, an 
industrial partner was found to co-design, co-develop, test, and assess the added value of the 
MED-GOLD proof-of- concept agricultural climate service. In the grape sector, the industrial 
partner was SOGRAPE Vinhos (Dell’Aquila et al., 2023), the largest wine company of Portugal. 
They manage over 1600 ha of vineyards and produce wines across 5 countries and 3 continents. 
Fungal diseases and sunburn cause considerable losses in grape yield (20 - 30%) and value 
(20%) in the single harvest each year (António Graça, 2021). Through the co-development of 
process with SOGRAPE Vinhos (Chou et al., 2023; Dell’Aquila et al., 2023; Marta Bruno 
Soares et al., 2019), seasonal forecasts of Spring Rain, Heat Stress Days, and Warm Spell 
Duration, with a minimum accuracy of 70% compared to observations, were identified as being 
helpful for explaining incidences of fungal diseases and sunburn, while improving viticulture, 
labor and stock management for grape growers in the Douro Valley (Northern Portugal). In 
this work, we have determined an appropriate annual fee to access the seasonal forecast of 
these three bioclimatic indicators on the MED-GOLD dashboard. To determine the fee, we 
first calculated the seasonal forecast performance of these three indicators over the Douro 
Valley wine region. The seasonal forecast performance accounts for the hit-rate, false-alarm 
rate, and accuracy of the European Centre for Medium Range Weather Forecasts (ECMWF) 
seasonal forecasts version 5 data (Johnson et al., 2019; Stockdale et al., 2018), known as SEAS5, 
compared to the ECMWF reanalysis version 5, known as ERA5, of historical weather and 
climate data (Bell et al., 2021; Hersbach et al., 2020). The second component of determining 
the annual fee, includes a cost-benefit analysis identifying the potential savings and losses of a 
micro holding grape grower. Micro holding grape growers make up most grape growers in 
Douro Valley wine region, making their perspective essential when determining a climate 
service fee. Combining the results of both analyses, a range of "access fees" was proposed 
according to the accuracy of the seasonal forecast. 
The results showed the SEAS5 seasonal forecasts of the three bioclimatic indicators starting in 
March to be 54-60% accurate, compared to the ERA5 reanalysis, for hotter- and/or wetter-
than-normal conditions over the Douro region. These forecast accuracies are statistically better 
than assuming the upcoming season will be "normal", although lower than preferred. 
Nonetheless, this climate service adds value to the traditional agri-food system. 
If the seasonal forecast accuracy is 100%, incorporating it into the decision-making process 
could save farmers more than 10% of annual harvest earnings in an average year and more than 
15% in a hotter and/or wetter than normal year. Potential losses due to false alarms, however, 
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must be accounted for. We propose an annual climate service fee of € 20/year to access the 
seasonal forecasts, over the Douro region, starting in March. This fee was determined by 
considering: (i) the financial loss due to fungal diseases and sunburn; (ii) the maximum potential 
savings of a seasonal forecast in terms of labor and fungicide; and (iii) the 50% accuracy of the 
seasonal forecasts starting in March. In addition, we have shown that the potential revenue that 
could be generated from the MED-GOLD dashboard seasonal forecast alone, by charging the 
(minimal) access fee, is almost 10 times the annual maintenance cost of the dashboard. Thus, 
the revenue could cover adaptive and preventive maintenance activities to improve the MED-
GOLD dashboard according to user feedback. 
  
Lastly, the approach developed in this work, to determine the MED- GOLD Dashboard access 
fee, showed how improvements to the seasonal forecast accuracy directly impact the value of 
the climate service. The approach we used to identify the value of the climate service tackling 
fungal disease and sunburn can be applied to other MED-GOLD sector products and climate 
services. For example, those related to the olive or wheat sectors or future climate projections. 

 

5.1.2 MED-GOLD project 

The MED-GOLD project was a proof-of-concept agricultural climate service which focused 
on three staples of the Mediterranean food system: grapes, olives, and durum wheat. Scientific 
and industrial experts partnered together to demonstrate the added value of co-designing and 
co-developing information-driven responses to climate changes. A comprehensive description 
of the co-development of the MED-GOLD pilot climate service for the grape/wine sector is 
described in (Dell’Aquila et al., 2023). The agricultural climate service for the wine sector was 
co-developed with SOGRAPE Vinhos, the largest producing wine company in Portugal. 
SOGRAPE’s participation as a co-designer in this pilot climate service acts as a catalyst, 
accelerating the engagement within the wine sector. Having a single dedicated “champion user” 
in the co-production of the climate service tool was particularly important in the Douro wine 
region (Figure 5.1-1Figure 5.1-1: The Douro Wine Region in Northern Portugal. Image Credit: SOGRAPE 

(António Graça, 2021).) due to the distribution of grape growers. From the Douro wine region’s 
holding size distribution, shown in Figure 5.1-2, it can be seen that ≥ 60% of grape growers 
have micro holdings (≤ 1 ha). With only one grape harvest per year, the income generated by 
the harvest on a micro holding is merely supplementary income for the grape grower. Often, 
these grape growers can not commit the time needed for the entire process of climate service 
co-production, which includes repeated interviews, testing and iterating products/services, etc., 
in addition to their regular jobs. SOGRAPE has the knowledge, resources, and personnel to 
dedicate to the co-production process with its own fulltime Research & Development team. 
They participate in research projects and disseminate results to grape-growers and the wider 
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wine sector; including the ∼ 1000 grape growers who sell their products to SOGRAPE in the 
Douro wine region (António Graça, 2021). 
 

 
Figure 5.1-1: The Douro Wine Region in Northern Portugal. Image Credit: SOGRAPE (António Graça, 

2021). 

5.1.2.1 Douro Wine Region 

The Douro wine region is a mountainous region in Northern Portugal (Figure 5.1-3) with a 
very steep terrain. Tiered terraces have been etched along its steep slopes. The rocky, schistous 
soil of the Douro region is dry and poor in nutrients but has excellent heat retaining properties. 
With terraces offering different variations in altitude, exposures to sun and wind, soil fertility, 
and atmospheric humidity, the Douro region is a host to a variety of grape types. The six 
principal red and white grape varieties include, Tinta Amarela, Tinta Barroca, Tinto Cão, Tinta 
Roriz, Touriga Nacional, Touriga Francesa, Gouveio, Arinto, Malvasia Fina, Rabigato, 
Viosinho, and Códega. 

5.1.2.2 Fungal Diseases and sunburn 

Some grape varieties, such as Touriga Francesa, which account for approximately 25% of all 
grapevines in the Douro wine region (Instituto da Vinha e do Vinho, 2021), have tight grape 
bunches. This makes them more susceptible to fungal diseases, particularly when warm and 
moist conditions persist and air can not circulate in the grape bunches(António Graça, 2021) 

Atmospheric humidity in the Douro wine region, in particular after rain in the spring, can drive 
risk of infection by Plasmopara viticola (downy mildew) (Figure 5.1-4a) (António Graça, 2021). 
When downy mildew emerges during critical phenological stages, such as at blossom or at fruit 
set, grapes are damaged, ultimately reducing yield. Downy mildew can be avoided by the 
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procurement and application of protection products, such as copper-based formulations. 
Determining when protection products should be applied relies on daily monitoring of 
temperature, rainfall, and vegetation conditions. For example, the period after budbreak, when 
daily average temperature exceeds 10 °C and shoots are at least 10 cm long, a rainfall event of 
10 mm over 2 days prompts visual inspections for fungal disease development (António Graça, 
2021). Fungal development in susceptible areas has, historically, appeared one week after the 
rain event. After a visual verification of fungal development and protection products have been 
applied, atmospheric humidity conditions must be monitored as ensuing rainfall events may 
provoke secondary infections. Should this occur, protection products must be reapplied. 
Protection products may be applied multiple times throughout the growing season (António 
Graça, 2021). Downy mildew protection products, however, have expiration dates over which 
they lose activity. Their short shelf life means any quantity not used during the growing season 
should not be carried over. 

When high atmospheric humidity conditions are combined with mild-warm temperatures, 
sheltered conditions can be created around the bunch zones, especially in high-vigour 
grapevines. These unaerated bunches may be infected by Erysiphe necator (powdery mildew) 
(Figure 5.1-4b) (António Graça, 2021). Should an infection of powdery mildew occur during 
the veraison stage of grape bunch development, the result is a loss of grapes quality. Powdery 
mildew can be avoided through manual trimming and leaf thinning by labourers, known as 
active canopy management. These exposed grape bunches, however, are susceptible to sunburn 
as a result of direct solar radiation exposure (Figure 5.1-4c) when temperatures exceed 35 °C 
(António Graça, 2021; Hunter & Bonnardot, 2011). This is particularly problematic during 
heatwaves. In addition, when temperatures exceed 35 °C, the grapevine undergoes heat stress. 
The plant closes its stomata and photosynthesis no longer occurs. As the plant uses more water 
to cool its tissues, it can lead to a disruption in flowering or berry and leaf dehydration, and 
sunburn. Both sunburn and powdery mildew lead to a decrease in crop quality and value, but 
active canopy management can prevent the risk of either occurring. With a single harvest per 
year, the yield and value of an entire production of wine quality grapes can be significantly 
reduced, or even lost, due to weather phenomena and viticulture mismanagement. In the 
Douro region, SOGRAPE found downy mildew typically caused a yield loss of 30%, whereas 
sunburn caused a yield loss of 20%, and powdery mildew caused a value loss of 20%. These 
values are the same for all holdings, regardless of size (António Graça, 2021). 
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Figure 5.1-2: Distribution of holdings according to Farm Size in the Douro wine region. Percentage of total 

distribution shown in square brackets. Data Source: Instituto dos Vinhos do Douro do Porto, (2020). 

 
Figure 5.1-3: Mountainous and rocky terrain of the Douro Wine Region. Photo Credit:SOGRAPE (António 
Graça, 2021).



 

 

 

a) b )  c) 

   

Figure 5.1-4:  Examples of (a) Plasmopara viticola, known as Downy Mildew. (b) Erysiphe necator, 
known as Powdery Mildew and (c) sunburn. Photo Credit: SOGRAPE (António Graça, 2023) 

5.1.3 Bioclimatic Indicators 

Through several workshops, interviews, and focus group discussions with different levels 
of management, directors, and executives covering SOGRAPE’s decision chain in 
productive and procurement operations the following bioclimatic indicators were identified 
as being useful for explaining the incidence of fungal diseases and sunburn in grape 
bunches (Chou et al., 2023; Dell’Aquila et al., 2023; Marta Bruno Soares et al., 2019; 
Terrado et al., 2023). 

These bioclimatic indicators, for the Northern Hemisphere, are defined as: 

1. Spring total precipitation (SprR), the total accumulated rainfall from April 21st to 
June 21st. This indicator is associated with vigorous under-vines growth which increases 
atmospheric humidity and restricts airflow, contributing to fungal disease risk (Australian 
Wine Research Institute, 2016; Dell’Aquila et al., 2023). 

2. Heat Stress Days (SU35), the total count of days which the daily maximum 
temperature exceeded 35◦C between 1st April and 31st October (Chou et al., 2023). This 
indicator is associated with the number of days photosynthesis of the plant is limited. After 
veraison, it can affect the sugar, polyphenol, and aroma precursor concentrations in berries, 
thereby affecting grape and wine quality (Chou et al., 2023). 

3. Warm Spell Duration Index (WSDI), total count of days which the daily maximum 
temperature exceeded the 90th percentile for at least 6 consecutive days between 1st April 
and 31st October (Chou et al., 2023). This indicator is associated with dehydration, 
flowering disruption, and scalding of berries and leaves (Chou et al., 2023). 
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5.1.4 Climate Service 

The workshops, interviews, and discussions also helped determine that the mitigation of 
fungal diseases and sunburn in grape bunches impacts several operational areas including 
viticulture, labour, and stock management (Chou et al., 2023; Dell’Aquila et al., 2023; Marta 
Bruno Soares et al., 2019; Terrado et al., 2023). These areas can benefit from a climate 
service that helps forecast fungal infection risk and sunburn. Seasonal forecasts of SprR, 
SU35, and WSDI, with a minimum accuracy of 70% compared to observations, were 
presented in a format which was easy to interpret, understand, and use would suit this 
purpose (Chou et al., 2023; Dell’Aquila et al., 2023; Fontes et al., 2016; Marta Bruno Soares 
et al., 2019; Terrado et al., 2023). 

An effective climate service providing forecasts with longer lead times al- lows viticulture 
management to improve the timing of vineyard operations such as pruning and canopy 
management, as well as planning fungal disease treatments. Similarly, labour management 
benefits from improved identification and anticipation of high-demand labour periods for 
the application of protective treatments and canopy management. Stock management 
benefits from a climate service that offers adequate anticipation of seasonal climate trends 
which allows for the early procurement of downy mildew protection products at a lower 
cost. Additionally, chemical waste can be reduced when the correct amount of downy 
mildew protection products are purchased. 

A climate service that provides accurate seasonal forecasts allows for the timely 
procurement of fungicide product and hiring of labour to tackle downy and powdery 
mildew, as well as sunburn, can reduce losses in grape yield and value. For many 
viticulturists, a key question is "How much is a climate service worth?" 

Previous work regarding the climatic service market or the valuation of climate service 
benefits for adaptation  Vaughan et al., (2019), such as in Vogel et al., (2017) and Cortekar 
et al., (2020), or in improved water management Delpiazzo et al., (2023), have not addressed 
the issue of access fees. The approach developed in this work to determine an annual 
climate service access fee, in particular where the fee is linked to the performance of the 
forecast, is novel. 

5.1.5 Valuation of Climate Service 

This work determined an acceptable annual fee to access the seasonal forecasts of SprR, 
SU35, and WSDI on the MED-GOLD Dashboard (described in Section XX). An annual 
fee for seasonal forecast accuracies of 50%, 70%, and 90% was calculated at the request of 
SOGRAPE (António Graça, 2021). The overall forecast accuracy depends on the hit-rate, 
false-alarm rate, missed forecasts, and correct rejections (described in Section XX). The 
performance of the seasonal forecast is integral for determining the climate service’s 
"value" because it is directly linked to the hiring of labour, product procurement 
expenditures, and potential savings for the grape growers. 
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The existing market for the MED-GOLD Dashboard amongst viticulturists in the Douro 
wine region is driven by micro holding grape growers. Their profit/loss margins will govern 
the maximum cost of the climate service. Micro holding grape growers indirectly reflect 
purchasing power and influence purchasing choices. The cost of the climate service must 
not exceed the potential loss by fungal infection or sunburn, nor significantly reduce profit 
margins of the grape grower. To determine a valuation of the MED-GOLD Dashboard, it 
is essential to understand the potential financial gains and losses of a micro holding grape 
grower due to fungal disease and sunburn. This will be presented in Section XX. In this 
work, the valuation of climate service was based on: (i) the performance of the seasonal 
forecasts of SprR, SU35, and WSDI on the MED-GOLD Dashboard (Dunn et al., 2020; 
Martins et al., 2021); (ii) the cost of inaction of fungal disease; and (iii) the potential savings 
due to actionable climate knowledge. The aim was to propose a reasonable fee for a climate 
service tackling fungal diseases and sunburn. 

5.1.5.1 Technical Considerations & Business Sustainability 

In addition, this work determined if the existing market in the Douro wine region, with the 
proposed fee, can sustain the minimum annual IT infrastructure cost of about € 12000, 
which was determined during the MED-GOLD project’s prototype development. The 
MED-GOLD Dashboard and the MED-GOLD ICT (Information and Communication 
Technologies) platforms it relies upon were designed around a Public Cloud-based 
infrastructure, namely Amazon Web Services (AWS). The main reason for this fundamental 
architectural choice resided in one of the defining features of Cloud computing: elasticity. 
While traditional “on-premises” IT infrastructures usually require large capital expenses in 
order to acquire, configure, build, and maintain a physical data center, publicly available 
Cloud platforms allow users to dynamically create, manage, and destroy needed IT 
resources in an elastic way, only generating operating costs when those resources (e.g.: 
storage, computing units) are actively used. This way, a Cloud-based application, such as 
the MED-GOLD Dashboard, can still be viable for small-scale scenarios, and, when 
designed according to best practices, can easily be scaled up as the need arises. For a more 
detailed description of the technical considerations about the deployment of the MED-
GOLD ICT platform and the Dashboard application, please refer to (Wiréhn, 2024). The 
expected cost of € 12000 included both the MED-GOLD Dashboard web application’s 
infrastructure itself and the entire data processing pipelines it relies upon: source data 
fetching from the European Union’s Earth Observation Programme Copernicus Climate 
Change Service (C3S) (https://cds.climate.copernicus.eu/) Climate Data Store (CDS), 
validation and normalization of scripts, indicators calculations, and storage. It is important 
to note that this cost should be considered as the bare minimum to sustain the recurring 
cost of the basic Cloud-based IT infrastructure and wouldn’t allow for any enterprise-level 
maintenance or application-level improvements. 
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5.2 MATERIALS AND METHODS 

5.2.1 MED-GOLD Dashboard 

The MED-GOLD Dashboard is user-focused web-based application designed and created 
to visualise and disseminate relevant climate information for three Mediterranean 
agricultural sectors. For a comprehensive review of the MED-GOLD Dashboard for the 
grape and wine sector, please refer to Dell’Aquila et al. (2023). There is also a MED-GOLD 
dashboard user guide entitled "Deliverable 3.5 A handy easy-to-use manual for stakeholders 
Wine practitioners of the climate service tool. PART II: the grape/ wine sector." available 
at https://www.med-gold.eu/documents-deliverables/.  

The MED-GOLD dashboard presents climate information provided by the CDS 
(Buontempo et al., 2020; C3S, 2023). The CDS provides access to numerous quality 
checked climate data sets including the ECMWF ERA5 reanalysis of historical weather and 
climate data (Bell et al., 2021; Hersbach et al., 2020), which we used to verify the ECMWF 
SEAS5 seasonal forecasts of atmospheric and oceanic conditions (Johnson et al., 2019; 
Stockdale et al., 2018). SEAS5 consists of a 51-member ensemble initialised every month 
on the first day of the month and integrated for 7 months (Johnson et al., 2019). SEAS5 
has a spatial resolution of 0.25 degrees. On the MED-GOLD Dashboard, the SEAS5 was 
used to compute SprR, SU35 and WSDI starting at different months (March to June) (Calì 
Quaglia et al., 2022; Doblas-Reyes et al., 2013; Giuntoli et al., 2022). For a comprehensive 
description of all CDS products used in the MED-GOLD Dashboard, please refer to the 
project "Deliverable 7.2 Data Management Plan" available at https://www.med-
gold.eu/documents-deliverables/). The MED-GOLD dashboard presents the climate 
information for each of the three time periods (historical climate, seasonal forecasts, and 
long-term projections) in their own sections. In each of these sections, the climate 
information is classified into the following three categories: Climate variables (e.g. 
precipitation); Bioclimatic indicators (e.g. Spring Rain); and Wine Risk Indicators (e.g. 
Sanitary and Heat Risk). The dashboard is a visualization focused web-based application 
that also allows users to browse, view, and download climate data. Relevant parameters can 
be selected one-by-one according to preferred time range, geographic location, scenario 
type/forecast starting month, climate indicator, etc. The indicators are available in several 
different formats and visualizations, allowing for easy, quick, and seamless integration into 
critical decision-making. Users can access and interact with relevant climate information 
without any programming knowledge or the need to manage large climate data files. The 
main functionalities of the dashboard were based on specific needs highlighted by 
SOGRAPE.  

The study considers only one component of the MED-GOLD dashboard namely, seasonal 
forecasts of three bioclimatic indicators. 

https://www.med-gold.eu/documents-deliverables/
https://www.med-gold.eu/documents-deliverables/
https://www.med-gold.eu/documents-deliverables/
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5.2.1.1 MED-GOLD Dashboard: Seasonal forecasts 

The seasonal forecasts of each bioclimatic index on the MED-GOLD Dashboard is 
presented in terciles. The terciles indicate: above normal, normal, or below normal, where 
’normal’ is defined as the range between the 33rd and 66th percentile over the 1993 - 2020 
period from the bioclimatic index derived from the ECWMF ERA5 reanalysis of global 
weather and climate (Bell et al., 2021; Hersbach et al., 2020). ’Above-normal’ is defined as 
greater than the 66th per- centile and ’Below-normal’ is defined as less than the 33rd 
percentile (Deliverable3.2, 2018; Deliverable3.3, 2018). The values which lie above the 
upper tercile or below the lower tercile are commonly considered as anomalies in climate 
science (Deliverable3.5, 2018; European Centre for Medium-Range Weather Forecasts 
(ECMWF), 2021). The presentation of the indicators as above/below normal is a result of 
the dashboard’s co-development process, taking into account user feedback, allowing for 
a more diverse range of users of climate information ranging from beginners to advanced 
(Dell’Aquila et al., 2023; Marta Bruno Soares et al., 2019). 

In this study, we have only considered conditions under which grape growers would benefit 
from fungicide and sunburn prevention, namely hotter- and/or wetter-than-normal 
conditions, as recommended by SOGRAPE. As such, we analysed and reported the 
performance of the three bioclimatic indicators when above-normal conditions were 
forecasted in SEAS5 compared to ERA5 reanalysis. This study should not be confused 
with a comprehensive evaluation of the bioclimatic indicator performance seasonal 
forecast, which would also investigate the causes of deteriorating performances. For an 
advanced analysis of the seasonal forecasts of the bioclimatic indicators for the wine sector 
please refer to Chou et al., (2023). 

5.2.2 Performance metrics of Bioclimatic Indicators 

The performance of SEAS5 seasonal forecasts of above-normal conditions, from 1993 - 
2020, for each of the three indicators (SprR, SU35 and WSDI) was calculated for the region 
over the SOGRAPE company vineyards located in the Douro wine region (lon 7° 0’ 59” 
W , lat 41° 1’ 20” N). The SEAS5 resolution of 0.25 degrees translates to approximately 21 
km by 21 km over this grid box, which covers approximately 441 km2. The bioclimatic 
indicators are homogeneous over the grid-box. 

The performance of each of the three indicators is based on the hit-rate, false-alarm-rate, 
and accuracy of the SEAS5 seasonal forecasts compared to the ERA5 reanalysis (Hogan & 
Mason, 2011). The definitions of hit-rate, false-alarm-rate, and accuracy used are as follows 
(Eqn. 1, 2, 3): 

𝐻 =  
𝑎

𝑎+𝑐
  (Eqn. 1) 

𝐹 =
𝑏

𝑏+𝑑
  (Eqn. 2) 
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𝐴 =  
𝑎+𝑑

𝑎+𝑏+𝑑+𝑐
  (Eqn.3) 

Where: 

• a denotes a Hit. It is the number of times an event was correctly forecasted and 
occurred. 

• b denotes a False-Alarm. It is the number of times an event was fore- casted but 
did not occur. 

• c denotes a Miss. It is the number of times an event occurred but it was not 
forecasted. 

• d denotes a Correct-Rejection. It is the number of times an event was not 
forecasted and did not occur. 

 
 
Table 5.2.1: Contingency table. 

 
Forecasted 

Yes No 

Observed 

Yes 
(a) Hit (b) Miss 

No (c) Fals
e 

(d) Reject 

 

The MED-GOLD dashboard provides seasonal forecasts of SprR, SU35 and WSDI 
starting at different months (March to June) (Brönnimann, 2007; Calì Quaglia et al., 2022; 
Giuntoli et al., 2022). The earlier an accurate forecast can be made the better is for the 
climate service users. For each index, and for each starting month, the three performance 
metrics (hit-rate, false-alarm-rate and accuracy) are calculated. The performance of the 
bioclimatic indicators over the Douro valley gives a complete picture of the quality product 
the MED-GOLD project provides the grape growers and helps determine the value of the 
climate service. 

For grape growers using seasonal forecasts for planning purposes, both ’false alarms’ and 
’missed alarms’ are problematic. In the case of a false alarm, the seasonal forecast 
recommends that grape growers purchase product and hire labour to deal with a hotter- 
and/or wetter- than-normal summer, an investment that is not needed in the end. The 
grape growers’ money would be lost when a False-alarm occurs. In the case of a missed 
forecast of a hotter- and/or wetter-than-normal summer, no actionable climate knowledge 
is gained from the seasonal forecast. The grower does not lose additional money through 
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pre-purchase of unnecessary goods and services on the basis of the forecast suggestion. 
Their expenses, as well as losses in yield and value, in the season, would be the same as 
without a climate service. 

This work determined the value of the actionable climate knowledge that can be gained 
from seasonal forecasts by considering the amount of money that could be saved by using 
the climate service, as well as the impact of missed and false alarms. In other words, we 
conducted an ecosystem service to find the right value of the climate service. 

5.2.3 Ecosystem Services valuation approach 

Ecosystem Services (Burkhard et al., 2018) constitute a socio-ecological approach to 
analyse the relationship among ecosystems, economics, and social systems trying to 
measure and quantify the economic impact due to ecosystem changes. According to the 
Common International Classification of Ecosystem Services (CICES v.5.1 Haines-Young 
and Potschin-Young, 2018) classification, in agricultural fields, ecosystem services related 
to fungal diseases are included in regulating services: to control, prevent, and reduce the 
number of fungal disease event. 

To find the correct value of a climate service for viticulturists tackling fungal disease and 
sunburn in the Douro wine region, we took two ecosystem service approaches: ’Market 
Value’ and ’Standard Output’. The approaches are described below. The market value 
approach is included to provide farmers in the Douro region a relatable analysis, while the 
standard output approach allows for a generalization of this study to other farmers in the 
European market. 

5.2.3.1 Market Value 

The Market Value approach took into account the average yield, yield loss, and price of 
good quality grapes, over a six-year period from 2014 to 2019, from a >20 ha property in 
the Douro wine region (António Graça, 2021). These values were provided by SOGRAPE 
and assumed to be representative for the region. The value of € 3136/ha was set as the 
economic value of ecosystem services based on an average yield of 3200 kg/ha with an 
average price of € 0.98/kg for a good quality yield of wine grapes (António Graça, 2021). 
We used these values to estimate cost of inaction against fungal diseases and sunburn by 
vineyard area. 

5.2.3.2 Standard Output 

In addition to the market value approach, we also present a valuation based on the 
European Union’s standard output. The Standard Output (SO) of an agricultural crop is 
defined as the average monetary value of the agricultural output at farm-gate price, in €/ha 
(Eurostat, 2023). The European Standard Output values are released by EuroStat every few 
years, which represents the 5-year average of an agricultural product (crop or 
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livestock)(Eurostat, 2023). According to Eurostat SO 2013 (Eurostat, 2013) the Standard 
Output of "Vineyards - Quality Wine" is € 2610/ha for the Norte region of Portugal where 
the Douro wine region sits. This value was used in the following calculations of inaction. 
The standard output is used as a classification of agricultural holdings by type of farming 
and by economic size across Europe (Eurostat, 2023). This value was determined by using 
the average prices from 2011 to 2015 and applied to the 2016 Farm struc- ture survey data 
(Eurostat, 2013). The standard output includes sales, redeployment, self-consumption and 
changes in the stock of products, without the costs of transport and marketing, except for 
those products for which the price for packaging is also included. The standard output does 
not include direct payments, Value Added Tax (VAT) or taxes on products (European 
Commission Regulation 1242/2008, European Commission Regulation 1166/2000). 

5.2.4 Farm Personas 

The valuation of a climate service which forecasts infections risk, allowing for better hiring 
practices and the deployment of preventative measures, was performed for 3 personas: the 
’Reactive Farmer’, the ’Prepared Farmer’, and the ’Pro-active Farmer’. The ’Reactive 
Farmer’ makes spontaneous decisions according to present conditions; and is most similar 
to the ’real world’ grape grower who must react in terms of purchasing fungicide and hiring 
labour as the situation unfolds. The Reactive Farmer is most susceptible to abrupt increases 
in costs. The ’Prepared Farmer’ uses industry knowledge and experience to prepare for 
infections and procures some fungicide products ahead of time at a lower cost. This 
persona has the ability to absorb some loss if labour or products are not needed. Lastly, the 
’Pro-active Farmer’ bases their decision to procure fungicide or hire labour entirely on the 
seasonal forecast. They assume the seasonal forecast is correct all the time (a.k.a. a 100% 
accuracy). A cost-benefit evaluation was performed for each of these personas for differing 
seasonal forecast accuracies of the bioclimatic indicators. 

5.3 RESULTS 

5.3.1 Performance of the bioclimatic indicators 

The performance of the three bioclimatic indicators from SEAS5 seasonal forecasts, 
starting at different months, was compared to the ERA5 reanalysis over the SOGRAPE 
company vineyards. The hit-rate, false-alarm-rate, and accuracy of SprR, SU35, and WSDI 
are presented in Table 5.3.1, Table 5.3.2 and Table 5.3.3 respectively. The metrics in Tables 
2, 3, and 4 range from 0 to 100%. A forecast with a hit-rate lower than 33% is equivalent 
to the climatological average range (i.e. within the "normal" range) and as such does not 
provide actionable climate knowledge to the grape grower. The higher the hit-rate,the 
better. In regards to the false-alarm rate, a good forecast will have low values. For the 
accuracy metric, the higher the value, the better. 
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Table 5.3.1: Spring Rain (SprR) performance metrics for seasonal forecasts starting at different months. 
The hit-rate, false-alarm-rate, and accuracy are shown in percentages (%). 

 Mar Apr May Jun 

Hit-Rate 25 25 38 63 

False-alarm Rate 24 33 11 11 

Accuracy 60 54 73 81 

  
The hit-rate of seasonal forecasts of SprR starting in March and April are only 25%, 
however, as the season progressed the performance improved, and the hit-rate of the June 
forecast rose to 63%. The false-alarm rates also improved as the season progressed, going 
from a maximum of 33% to 11% in June. The overall accuracy of SprR forecasts for wetter-
than-normal springs are all well above 33% and is better than assuming the climatological 
mean. The accuracy is good in May and June, above 70%, however, the forecast starting 
April is only 54%. 

Table 5.3.2:Number of Heat Stress Days (SU35) performance metrics for seasonal forecasts starting 

at different months. Values are shown in percentages (%). 

 Mar Apr May Jun 

Hit-Rate 50 40 30 70 

False-alarm Rate 44 31 44 33 

Accuracy 54 58 46 68 

 

For SU35 the hit-rate for seasonal forecasts were better in March and June compared to 
April and May. The June forecast had the best hit-rate with 70%. Comparably, May 
forecasts only had a hit-rate of 30%. The false-alarm rate in both March and May were 
above 40%, which is high. The overall forecast accuracies of SU35 for warmer-than-normal 
conditions, for all starting months, were above 46% and better than assuming the 
climatological mean. The best performance accuracy was in June with 68%. 
The hit-rates of seasonal forecasts of WSDI, for all starting months, range from 42% to 
58%. The false-alarm rate from March through May are quite high, with the April forecast 
reaching a peak of 50%. Significant improvements are seen in June (14%). The overall 
forecast accuracies of WSDI for hotter-than-normal conditions, regardless of starting 
month are greater than 46% for the Douro region and can be considered better than 
assuming the climatological mean. 

Table 5.3.3: Warm Spell Duration Index (WSDI) performance metrics for seasonal forecasts starting at 

different months. Values are shown in percentages (%). 

 Mar Apr May Jun 

Hit-Rate 42 42 58 50 

False-alarm Rate 36 50 43 14 

Accuracy 54 46 58 69 
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Of the three bioclimatic indicators, the most accurate was SprR. The accuracy of SU35 and 
WSDI, overall, were nearly identical. Interestingly, the hit-rates of SU35 and WSDI were 
better than SprR, however, their false-alarm rates were worse. 

For all indicators, the accuracy of the seasonal forecasts for hotter- and/or wetter-than-
normal conditions were most accurate when starting in June. The relatively poorer 
performance in April and May, compared to March and June could be related to seasonal 
predictability and to large-scale phenomena influencing the local scale meteorology in 
spring (Brönnimann, 2007; Calì Quaglia et al., 2022; Giuntoli et al., 2022). It should be 
iterated that this study simply reports the accuracy of the seasonal forecast over the 
SOGRAPE vineyards for the purpose of determining the value of the climate service. This 
study is not a verification analysis of the seasonal forecasts in general, nor have we 
investigated the causes of deteriorating performances of the bioclimatic indicators, as found 
in April. This has been done in the following works of (Chou et al., 2023; Dell’Aquila et al., 
2023; Johnson et al., 2019; Stockdale et al., 2018). 

5.3.2 Valuation of Climate Service 

As mentioned, the cost of the climate service must not exceed the potential loss by fungal 
infection or sunburn, nor significantly reduce profit margins of a micro holding grape 
grower. As such, we first determined the cost of inaction against fungal disease. Secondly, 
we determined the maximum potential savings the seasonal forecasts knowledge can 
provide. Thirdly, the total cost of the climate service was calculated, which accounts for 
forecast errors. Lastly, we calculate whether the proposed climate fee can sustain the MED-
GOLD dashboard. 

5.3.2.1 Cost of inaction against Fungal Disease 

In Table 5.3.4 the average yield and income for different holding sizes, based on the market 
value approach, are presented alongside potential cost of inaction due to fungal disease and 
sunburn. Additionally, the yield loss, according to Eurostat methodology, in terms of 
standard output prices of good quality grapes was also calculated (Table 5.3.5). We only 
considered the value of quality grapes necessary for wine in this study and have not 
considered lower quality grapes.



 

 

Table 5.3.4: Cost of inaction against fungal diseases for various holding sizes in terms of market value. 

Values rounded to nearest Euro. 

 1 ha 5 ha 10 ha 160 ha 

Avg. Yield (3200 kg/ha) 3200 kg 160000 kg 32000 kg 512000 kg 

Avg. Price for quality yield (0.98 €/kg) € 3136 € 15680 € 31360 € 501760 

Downy Mildew Loss (30% less yield) € 941 € 4704 € 9408 € 150528 

Sunburn Loss (20% less yield) € 627 € 3136 € 6272 € 100352 

Powdery Mildew Loss (20% value loss) € 627 € 3136 € 6272 € 100352 

 
 

Table 5.3.5:Cost of inaction against fungal diseases for various holding sizes in terms of Eurostat 

Standard Output 2013 (Euro/ha) for the Norte region of Portugal (Eurostat, 2013). 

 1 ha 5 ha 10 ha 160 ha 

Vineyards - quality wine € 2610 € 13050 € 26101 € 417615 

Downy Mildew Loss (30% less yield) € 783  € 3915  € 7830 € 125284 

Sunburn Loss (20% less yield) € 522  € 2610 € 5220 € 83523 

Powdery Mildew Loss (20% value loss) € 522  € 2610 € 5220 € 83523 

 

The potential losses presented for the 1 ha holdings range from € 627 - 941 following the 
market value approach, and € 522 - 783 following the standard output approach. These 
potential losses are the upper bound of any climate service fee. 

5.3.2.2 Value of actionable knowledge for Fungal Disease and Sunburn 

The next step in the approach developed to determine the value of a climate service for 
fungal mitigation was to calculate the potential savings a seasonal forecast could provide in 
terms of early procurement of fungicide and labor. For this we considered the costs 
associated with an average year (Table 5.3.6) and a hotter- and/or wetter-than-normal year 
(Table 5.3.7). The values used in the following section for labor costs, the number of sprays 
of downy mildew protection product, amount of protection product needed, and costs of 
protection product, were based on those from a holding in the Douro region averaged over 
a six-year period (António Graça, 2021). On average 9.4 kg/ha of downy product was used 
per spray, which cost € 9/kg when procured 6 months ahead of time, or € 16/kg when 
procured 2 weeks ahead of time (António Graça, 2021). For each hectare of the holding, 
the Pro-Active Farmer could save an additional € 110 in labor (António Graça, 2021) for 
an accurate seasonal forecast. 
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Table 5.3.6: Costs associated with the procurement 4 sprays of downy mildew fungicide, typical of an 

average year, for a 1 ha holding. Savings related to labour included for Pro-Active farmer. Source: 

SOGRAPE (António Graça, 2021) 

 # Sprays 
procured 

6 months ahead 

# Sprays 
procured 

2 weeks ahead 

 
Total 
Costs 

Savings 
relative to 

Reactive Farmer 

Reactive Farmer 0 4 € 601.60 - 

Prepared Farmer 2 2 € 470.00 € 131.60 

Pro-Active Farmer (Forecast 
accuracy 100%) 4 0 € 388.40 € 373.20 

 

Table 5.3.7: Costs associated with the procurement of 6 sprays of downy mildew fungicide, typical of 

a ’wet’ year, for a 1 ha holding. Savings related to labour included for Pro-Active farmer. Source: 

SOGRAPE (António Graça, 2021). 

 # Sprays 
procured 

6 months ahead 

# Sprays 
procured 

2 weeks ahead 

 
Total 
Costs 

Savings relative 
to 

Reactive Farmer 

Reactive Farmer 0 6 € 902.40 - 

Prepared Farmer 2 4 € 770.80 € 131.60 

Pro-Active Farmer 

(Forecast accuracy 
100%) 

6 0 € 507.60 € 504.80 

 
In the cost-benefit analysis presented in Table 5.3.6 and Table 5.3.7, we assume the Reactive 
Farmer has to procure all downy mildew protection product 2 weeks ahead of time at a 
higher cost. The Prepared Farmer has purchased the quantity need for 2 sprays 6 months 
in advance at a lower price. They must make any additional purchases of protection product 
needed in the season at a higher price. The Pro-active Farmer assumes the seasonal forecast 
has a 100% accuracy and purchases all protection product 6 months in advance. The 
savings relative to the Reactive Farmer is presented for both the Prepared and Pro-Active 
Farmer. 

The results in Table 5.3.6 show that a Pro-Active farmer can benefit from a climate service 
on an ’average’ year relative to both the Reactive and Prepared Farmers. For a seasonal 
forecast with an accuracy of 100% the Pro-Active farmer could save € 373.20, compared 
to the Reactive farmer, which is more than 10% of the market value and standard output 
earned for quality wine grapes on 1 ha. The Pro-Active farmer saves >2.8 times the amount 
the Prepared farmer saves. Table 5.3.7 shows that the Pro-Active farmer aims to gain much 
more in wet years, through early procurement, if the seasonal forecast is correct. These 
values show that the Pro-Active farmer could save 16% of the market value and 19% of 
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the standard output on a 1 ha farm compared to the Reactive farmer. The Pro-Active 
farmer saves >3.8 times more than the Prepared farmer saves. 

In addition, we computed the savings for a various combination of prepared and 
spontaneous downy mildew sprayings (not shown) to determine range of loss/savings due 
to early procurement of downy mildew products and labor. For 1 ha, assuming 100% 
seasonal forecast accuracy, a Pro-active Farmer could save € 175 (for 1 spray and labor) to 
€ 768 (for 10 sprays and labor) compared to Reactive Farmer in downy mildew product 
costs. In 2016, 10 sprays were needed; it was the maximum number of sprays recorded by 
SOGRAPE (António Graça, 2021). 

While the savings potential from seasonal forecasts are very attractive, the purpose of Table 

5.3.8 is to demonstrate the impact of a missed forecast of a hotter- and/or wetter-than-
normal year and similarly a false-alarm forecast. When a forecast is missed, the Pro-Active 
Farmer still saves money relative to the Reactive Farmer. A ’false-alarm’ forecasts of a ’wet’ 
year, however, can lead to a loss for the Pro-Active Farmer through wasted protection 
product and additional labor. The False-alarm rate of seasonal forecasts must be accounted 
for in the price of the climate service. 

Table 5.3.8: Costs associated with false-alarm and missed forecasts for labour costs and the 
procurement of 6 sprays of downy mildew fungicide, typical of a ’wet’ year, for a 1 ha holding. Source: 
SOGRAPE (António Graça, 2021) 

 

# Sprays 
Procured  
6 months 

ahead 

# Sprays to be 
procured or lost 

Total 
Costs 

Savings relative to 
Reactive Farmer 

Pro-Active Farmer 
(Forecast 50% miss) 

3
 

3
 

€ 705.00
 

€ 197.40
 

Pro-Active Farmer 
(Forecast 50% false) 

6 -3 € 507.60 € -166.40 

 

5.3.2.3 Proposed Climate Service Fee 

In Table 5.3.9 the range of potential savings associated with 1 to 10 sprays are presented for 
the Pro-Active Farmer compared to the Reactive and Pre-pared Farmer. This is assuming 
a seasonal forecast with a 100% accuracy. Additionally, the average potential savings for 3 
to 6 sprays is presented, which is more realistic. This ’averaged potential savings’ is what 
the grape growers aim to gain by using the seasonal forecast of the bioclimatic indica- tors 
on the MED-GOLD Dashboard. We used this value to help determine a first estimate of 
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an annual climate service access fee, which we took to be 10% of the average potential 
savings for a seasonal forecast with a 100% ac- curacy. The choice of 10% is a very 
conservative estimate to give us a lower bound of an annual fee. For simplicity, this initial 
dashboard access fee is scaled linearly by 50%, 70%, and 90% to represent forecast 
accuracy. This linear relationship can be adjusted if future studies collect and analyze data 
from more farmers regarding past financial losses due to fungal infection, as well as the 
financial changes that occur when some farmers incorporate seasonal forecasts into their 
decision-making process. 

Table 5.3.9: Range of potential savings of the Pro-Active Farmer, compared to the Reactive and 

Prepared Farmers, for a hotter- and/or wetter-than-normal year, for a 1 ha holding. 

 Proposed Fee 

 
Savings Range 1 

to 10 Sprays 
Avg. Savings 3 

to 6 Sprays 
10% of Avg. 

Savings 

90% 
accuracy 

70% 
accuracy 

50% 
accuracy 

Pro-Active 
Farmer vs. 

Reactive 
Farmer 

€ 175 - 768 € 406 € 40 € 36 € 28 € 20 

Pro-Active 
Farmer vs. 

Prepared 
Farmer 

€ 194 - 636 € 275 € 28 € 24 € 19 € 15 

 
If using the seasonal forecasts for hotter- and/or wetter-than-normal conditions starting in 
March, where the accuracy is closer to 50% rather than 100% (see Section 5.3.1), we 
propose a Climate Service Fee of € 20/year. This minimal fee should not act as a barrier 
for the adoption of the MED- GOLD Dashboard climate service for protection against 
fungal disease by viticulturists. While the seasonal forecast accuracy for hotter- and/or 
wetter-than-normal conditions is best in June, in the context of anticipating hiring labor 
and the early procurement of fungicides to reduce infection risk, June is too late. 

5.3.2.4 Maintenance and Sustainability of Climate Service for Viticulture 

With a proposed Climate Service Fee of approximately € 20 per year, which is a low 
estimate, we determined whether the potential market could sustain the maintenance and 
sustainability of the MED-GOLD Dashboard. Assuming a market uptake of the Douro 
holding distributions (Fig. 2, for both 30% (conservative) and 50% (realistic, as estimated 
by SOGRAPE (António Graça, 2021)), we show that an annual income of € 117789 and € 
196330 can be generated (Table 5.3.10). 
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Table 5.3.10: Annual income generated based on 30% and 50% market uptake of Douro holding 

distributions (Fig. 2) multiplied by an annual climate service fee of € 20. 

 Market Uptake of Holding Distributions 

Farm Size 30% Market 
uptake 

50% Market Uptake 

≤ 1 ha € 71700 € 119500 

>1 to ≤ 2 ha € 19332 € 32220 

>2 to ≤ 5 ha € 16104 € 26840 

>5 to ≤ 10 ha € 6180 € 10300 

>10 to ≤ 20 ha € 2880 € 4800 

> 20 ha € 1602 € 2670 

Total Annual Income € 117798 € 196330 

 
The calculated annual income far exceeds the expected € 12000/year needed to maintain 
the MED-GOLD dashboard and accounts for the increased number of dashboard users. 
This income could cover the costs of continuous monitoring and maintenance of the 
dashboard’s infrastructure; including corrective maintenance (i.e.: technical tasks, including 
but not limited to correction to an application’s source code needed to repair and correct 
logical and technical defects discovered after the original deployment). 

Moreover, the additional income could also be used, through adaptive and preventive 
maintenance activities, to keep improving the Dashboard according to users’ feedback, e.g. 
by leveraging all eventual new CDS products and databases, increasing climate data 
resolution, developing, and implementing new relevant indicators, etc. 

5.4 CONCLUSIONS 

The MED-GOLD Horizon 2020 project aimed to demonstrate the added value of climate 
services for traditional agri-food Mediterranean systems. For the Wine sector, one of the 
most relevant questions raised in the project was: Where can climate services add value to 
the decision-making process of wine companies and farmers when climate information is 
conveniently tailored and presented in a user-friendly manner? One of the main outcomes 
of the project was the MED-GOLD dashboard which provides essential climate variables, 
as well as bioclimatic indicators, in a simple-to-understand and easy-to-use manner. 

The three bioclimatic indicators, SprR, SU35, and WSDI, analyzed in this study have been 
co-developed to provide actionable climate knowledge to help mitigate fungal diseases: 
allowing for early procurement of fungicide products and the hiring of labor for canopy 
management. 
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In this climate service-oriented paper, we developed an approach to determine an 
acceptable annual fee for a micro holding grape growers to access the seasonal forecasts of 
the three bioclimatic indicators on the MED-GOLD dashboard. To determine the fee, 
first, we calculated the seasonal forecast hit-rate, false-alarm rate, and accuracy of these 
three indicators over the Douro Valley wine region. Second, we performed a cost-benefit 
analysis identifying the potential savings and losses of a micro holding grape grower. The 
results showed SEAS5 seasonal forecasts of the three bioclimatic indicators, for hotter- 
and/or wetter-than-normal conditions, starting in March have an accuracy of 54-60% 
compared to the ERA5 reanalysis over the Douro region. These forecast accuracies were 
better than assuming the upcoming season will be similar to the climatic average (a.k.a. 
"normal"). As such, we can see that this climate service adds value to the traditional agri-
food system. Micro holding farmers over can benefit from the actionable climate 
knowledge as a result of the SEAS5 accuracy. Of the three indicators, despite having a 
lower hit-rate, the overall seasonal forecasts of SprR performed better than SU35 and 
WSDI because it had lower false-alarm rates. The most accurate forecasts are those starting 
in June, however, correct as they may be, they bring little value to procure better pricing in 
products or labor.  

The results of the cost-benefit analysis showed that the cost of inaction due to fungal 
diseases and sunburn ranges from € 627-941/ha using the Market Value approach and € 
522-783/ha using the European Commission Standard Output approach. When the 
seasonal forecasts of the bioclimatic indicators are included in the decision-making process, 
they can save a farmer more than 10% of the annual income from a harvest for an average 
year. Similarly, more than 15% of the annual income from a harvest can be saved in a 
hotter- and/or wetter-than-normal year. These values represent what could be saved when 
the seasonal forecast accuracy is 100%, however, potential losses due to false-alarms (24%-
44% in March) must be accounted for. After taking into consideration the financial loss 
due to fungal diseases and sunburn (Sec. 5.3.2.1), the maximum potential savings of a 
seasonal fore- cast in terms of early procurement of labor and fungicide (Sec. 5.3.2.2), and 
the accuracy of the seasonal forecast starting in March (Sec. 5.3.1) over the Douro region, 
which is closer to 50% rather than 100%, we propose a Climate Service Fee of € 20/year. 

Based on this analysis, a climate service that correctly forecasts the infections risk: 

• 90% of the time should cost € 24 - 36. 

• 70% of the time should cost € 19 - 28. 

• 50% of the time should cost € 15 - 20. 

The approach used to determine the proposed climate service fee can be adjusted as 
performance of the seasonal forecast improves, in terms of hit-rate, false-alarm rates, and 
overall accuracy. As the seasonal forecast accuracy improves, so does its value to grape 
growers. The value to grape growers can increase with further developments or iterations 
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of the MED- GOLD Dashboard. Best practices for climate service may include providing 
performance metrics (such as hit-rate, false-alarm rate, and accuracy) along- side their 
products in a transparent manner to instill a user’s confidence. 

The methodology presented in this paper can be extended to the valuation of other MED-
GOLD Dashboard indicators (e.g. sanitary risk), regions (e.g. Italy), and time periods (e.g. 
climate projections). Elements of the methodology which can be generalized for the 
purpose of determining a user fee include: (i) evaluating the performance of a prediction; 
(ii) evaluating the financial impact and potential savings of a decision based on different 
forecast accuracies; (iii) linking the fee to the performance of the service; and (iv) 
transparent discussions regarding costs from the perspective of both the application user 
and software developer regarding maintenance. As such, a similar valuation can be 
performed for other MED-GOLD products created for the Olive and Durum Wheat 
industries. The annual income generated by the access fee for the seasonal forecast 
described in this paper would be only one contribution to the total income generated to 
maintain the MED-GOLD Dashboard. 

Lastly, given the proposed fee, the distribution of holdings, and assumed Market Uptake 
of farmers of the Douro wine region, we showed the annual income generated can easily 
cover the maintenance of the MED-GOLD Dash- board. This allows surplus revenue to 
be used for improving the Dashboard according to users’ feedback, as well as developing 
and implementing new relevant indicators, and leveraging new CDS products and 
databases. 

5.5 SUMMARY 

In this chapter an economic assessment of a climate service for wine production is 

presented. This section aims to establish an annual fee for micro holding grape growers to 

access the seasonal forecasts on the MED-GOLD dashboard.  The fee is determined by 

evaluating the hit-rate, false-alarm rate, and accuracy of the bioclimatic indicators in the 

Douro Valley wine region.  Additionally, a cost-benefit analysis is conducted to assess 

potential savings and losses for grape growers.  It is estimated that the early procurement 

of labor and fungicide through a seasonal forecast could result in significant savings, 

considering the financial losses caused by fungal diseases and sunburn. The accuracy of the 

seasonal forecast for the Douro region starting in March is approximately 50%. A proposed 

fee of €20 per year is required to access this Climate Service. 

This chapter uses a different set of bioclimatic indices compared to the previous chapters 

and does not focus on Italy. It was part of an international collaboration with MED-GOLD 

experts. The geographic area was chosen based on the availability of data in the dashboard. 

The bioclimatic indices used for the assessment were carefully selected for tackling the 

specific problems of fungal disease and sunburn, after numerous consultations with the 

users involved in the codeveloping process of the project, namely Sogrape company. 
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Despite this difference, Chapter 4 adds completeness to the entire work. Its purpose is to 

link the scientific and theoretical aspects presented in the previous chapters with a practical 

application, including an economic evaluation. Although it is still a case study, it has the 

potential to be generalised and applied in other cases. 



 

 

6.FINAL CONCLUSION 

The climate influence on the variability of wine grape productivity in Italy is studied using 
bioclimatic and ecoclimatic indices at different spatial scales. In addition, a practical 
application of bioclimatic indices is presented in a case study proposing a fee for a climate 
service already implemented in the wine sector. At regional scale, the single regression 
analysis between bioclimatic indices and wine grape productivity shows predominantly 
positive correlations between productivity and temperature-based indices, suggesting that 
vineyard management has adapted to the rising temperatures over time. The application of 
a multi-regressive model based on the optimal combination of the bioclimatic indices is 
found to be a powerful tool for predicting Italian wine grape productivity across most 
regions since it accounts for the interplay between temperature and precipitation-based 
indices. In Trentino Alto Adige, the model explains up to 54% of the variability in 
productivity at the interannual timescale, and up to 52% in Veneto and Puglia for the long-
term variability. Furthermore, the use of multi-regression results in significant 
improvements in the explained variance, even when none of the bioclimatic indices alone 
shows significant correlations with productivity (e.g., in Trentino Alto Adige the increase 
is 39 % for the total variability, and 44 % in Molise at the interannual time scale). In general, 
the analysis shows that long-term trends in the bioclimatic indices have greater impact on 
productivity than the interannual climate variability. 

Working at a regional scale provides an overview of the entire national territory, but the 
fragmented nature of the Italian wine sector cannot be framed at this scale. To address this 
limitation, an extended set of bioclimatic indices is computed at the local scale and linked 
with productivity data provided by two wine consortia: ‘Consorzio per la tutela del 
Franciacorta’ (FRA) in Lombardia and ‘Consorzio del vino Nobile di Montepulciano’ 
(MON) in Toscana. At a local scale, bioclimatic indices are found to be effective in 
explaining the total variability of wine grape productivity, especially in MON, where they 
do not show significant results at a regional scale. Furthermore, single regressions show 
statistically significant results only for a limited number of bioclimatic indices, whereas the 
multi-regression method consistently improves the explained variability and offers 
potentially usable information in both consortia.  In FRA, the multi-regression approach 
can explain up to 64% of the total variability, which is 29% higher than the single regression 
approach. Similarly, in MON, the multi-regression approach can explain up to 45% of the 
total variability, which is 11% higher than the single regression approach. The remaining 
unexplained variance may depend on other factors than climate, which range from 
viticultural practices to quality of the data collected. A complete picture of all the factors 
contributing to the total variability require additional investigation and falls out of the scope 
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of this work.  The use of CPM has a limited impact on the results in this study, as 
temperature primarily influences grape production. However, CPMs may be more useful 
when precipitation is the key factor. The assessment here provided can be used as a 
foundation for incorporating CPMs in upcoming impact studies, showing the application 
of bioclimatic indices in conjunction with grape productivity. 

Climate warming is predicted to change the timing of the plants life cycle, which could limit 
the use of bioclimatic indices calculated on a fixed calendar date, despite the optimal results 
obtained for the historical period. In fact, under climate change the same calendar date 
might refer to a different phenological period for the plants. Therefore, an alternative 
approach based on ecoclimatic indices is proposed. The impact of ecoclimatic indices on 
productivity in FRA and MON is investigated using both single and multiple regression 
approaches performing a variety-specific analysis. The results align with the analysis based 
on bioclimatic indices, in particular confirming that the multi-regression increases the 
portion of total productivity variability explained. Contrary to expectations, precipitation 
appears to have a positive effect on productivity in MON, while a limited impact is 
observed in FRA. This counter-intuitive result is consistent with the results obtained using 
the bioclimatic indices, suggesting that this may be a characteristic of the MON area or the 
prevalence of other non-climatic factors influencing productivity. 

The various techniques presented can form the basis for building a climate service for the 
wine sector, such as the one presented in the last chapter, which uses three specific 
bioclimatic indices (SprR, SU35 and WSDI) for sunburn and fungus disease prevention in 
grapes. In this case a methodology to calculate an efficiency-related fee, based both on the 
performance of the seasonal forecast of the bioclimatic indices and the user's decision 
process is developed. After analysing different decision scenarios linked to the forecast 
accuracy, a fee of € 20 per year is suggested. This price would generate revenue for the 
climate service that exceeds the cost of maintaining the MED-GOLD dashboard by almost 
ten times while providing a useful product for the farmers. Any surplus revenue can be 
used to improve the dashboard based on user feedback, develop, and implement new 
relevant indicators, and create new products and databases. 

The study acknowledges limitations due to the heterogeneity of the wine sector and 
productivity data. To address this issue, the study was conducted at both regional and local 
scales using different climate data and indices. However, it is important to note that grape 
production for the wine sector is a complex matter and productivity is influenced by various 
factors besides climate. Therefore, when investigating productivity variability, it is crucial 
to consider that only a portion of it can be explained by climate variability. Furthermore, 
when evaluating the performance of a climate service, it is important to consider the 
limitations mentioned above and the complexity of the system. Additionally, it is crucial to 
tailor the assessment to the specific purpose of the service. To fully utilize the service, clear 
and concise information must be provided to the user.  



 

 

3 

3 

The presented research indicates windows of opportunities for effective climate services 
linking bioclimatic or ecoclimatic indices directly to productivity and providing more 
straightforward answers to winegrowers. Such a service would be a valuable tool for 
estimating changes in productivity at the seasonal, decadal and multidecadal time scales, by 
integrating climate information from seasonal forecasts, decadal predictions, and future 
climate projections, respectively. These results also emphasise the importance of local-scale 
investigation and user involvement in the conception and tailoring of climate services. 
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APPENDIX A. ASSESSMENT OF CLIMATE IMPACT ON 

GRAPE PRODUCTIVITY: A NEW APPLICATION FOR 

BIOCLIMATIC INDICES IN ITALY 

Massano, L., Fosser, G., Gaetani, M., & Bois, B. (2023). Assessment of climate impact on grape 

productivity: A new application for bioclimatic indices in Italy. Science of the Total 

Environment, 905. https://doi.org/10.1016/j.scitotenv.2023.167134 

Table A 1 Mann Kendal Z and Sen’s Slope of the trend analysis of vineyard area, production, 
and productivity. The * and bold font marks statistically significative trend (p<=0.05) 

 Area  Production 

Cod.Reg Z 
Sen’s Slope 
[ha/year] 

Z 
Sen’s Slope [10^3 

q/year] 

ABR -0.5 -18.87 0.88 9.71 

BAS -7.05 -426.79* -4.13 -16.11* 

CAL -6.95 -716.71* -6.48 -38.19* 

CAM -7.75 -750.86* -6.93 -57.29* 

E-R -7.98 -661.60* -3.41 -90.69* 

FVG -0.24 -8.86 1.93 7.45 

LAZ -7.87 -1.51 10^3 * -7.07 -178.41* 

LIG -7.17 -165.96* -6.11 -12.04* 

LOM -6.86 -283.52* -4.83 -26.27* 

MAR -7.7 -537.54* -6.21 -70.33* 

MOL -6.89 -117.80* -4.14 -7.87* 

PIE -8.08 -861.62* -6.16 -59.66* 

PUG -7.38 -1.61 10^3 * -2.16 -72.74* 

SAR -7.95 -1.22 10^3 * -5.2 -54.07* 

SIC -7.56 -2.16 10^3 * -5.87 -244.63* 

TOS -7.92 -1.04 10^3 * -5.37 -59.22* 

TRA 1.3 15.29 -0.4 -1.52 

UMB -6.96 -330.83* -4.94 -18.10* 

VDA -7.6 -15.47* -6.29 -1.16* 
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 Area  Production 

Cod.Reg Z 
Sen’s Slope 
[ha/year] 

Z 
Sen’s Slope [10^3 

q/year] 

VEN -3.89 -566.17 -0.68 -16.53 
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Figure A 1: Characterisation of grape productivity by classes of bioclimatic indices. Circles 

represent the mean productivity within each class, vertical bars represent the standard deviation. 

In red, productivity values associated with classes not favourable to grape growing. 
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Table A 2: Multi regression coefficient raw data 

Cod.Reg (Intercept) TMVEG WI BEDD HI SprR CNI GSP 

ABR 85.24 2.71 - - - - - - 

BAS -26.13 - 0.05 - - - - - 

CAL 112.32 - - 0.04 -0.05 -0.08 - - 

CAM -603.68 68.73 -0.32 - - - - - 

E-R -1 488.34 156.87 -0.69 - - 0.16 - - 

FVG 108.61 - - -0.20 0.12 -0.04 - - 

LAZ 136.51 - - - - -0.07 -1.94 - 

LIG 30.74 - 0.08 -0.11 0.03 - - 0.02 

LOM 67.01 - - - 0.01 0.12 - -0.08 

MAR 72.61 - - - 0.01 - - - 

MOL 94.12 - 0.23 - -0.20 - - - 

PIE 63.75 - - - - - 1.68 -0.02 

PUG 131.60 - 0.25 - -0.22 - - -0.07 

SAR 47.21 - - - - - - -0.05 

SIC 258.27 -8.53 - - - -0.14 - - 

TOS 60.57 - - - - 0.02 - - 

TRA 380.84 -32.44 - 0.15 0.06 0.19 - -0.12 

UMB -75.32 8.10 - - - - - - 

VDA 117.03 -4.26 - - - - - - 

VEN -68.59 - - - 0.08 0.15 - - 
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Table A 3: Multi regression coefficient interannual time scale. 

Cod.Reg (Intercept) TMVEG WI BEDD HI SprR CNI GSP 

ABR 0.12 3.12 - - - - - - 

BAS 0.25 - - - - -0.11 - - 

CAL -0.23 - - - -0.03 -0.08 - - 

CAM 0.30 54.54 -0.16 -0.09 -0.06 -0.04 - - 

E-R 0.02 122.02 -0.81 0.18 0.18 0.27 - - 

FVG -0.18 -22.14 - - 0.09 - - - 

LAZ 0.00 86.23 -0.38 - - - - - 

LIG 1.14 - 0.08 -0.12 0.04 - -1.83 - 

LOM -0.03 - - - - 0.06 - - 

MAR 0.36 - - - 0.02 - - - 

MOL 3.39 - 0.40 -0.18 -0.32 -0.17 - - 

PIE 0.01 - - - - - 1.93 -0.02 

PUG 0.24 - - - - -0.13 - - 

SAR -0.07 - - - - - - -0.05 

SIC 0.05 -5.25 - - - -0.14 - - 

TOS -0.05 - - - - - - 0.02 

TRA 1.32 -14.95 - - 0.12 0.19 - -0.13 

UMB 0.61 53.48 -0.23 - - - -4.36 - 

VDA -0.19 - - - - 0.04 - - 

VEN 0.65 - - - 0.09 0.15 - - 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Viticulture in Italy is facing additional 
challenges due to changing climate. 

• Bioclimatic indices are used in 
conjunction of grape production data in 
Italy at regional level. 

• Individual bioclimatic indices partially 
explain variability in grape 
productivity. 

• A multi-regressive approach increases 
the variability explained by individual 
indices.  
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A B S T R A C T   

Italy is a world leader for viticulture and wine business with an export valued 7 billion of euros in 2021, and wine 
being the second most exported product within the national agri-food sector. However, these figures might be 
threatened by climate change and winegrowers call for more reliable local information on future impacts of 
climate change on viticulture. 

The study aims to understand the impact of climate on wine production in Italy using grape productivity data 
and bioclimatic indices. Using temperature and precipitation observations from the E-OBS gridded dataset, a set 
of bioclimatic indices recommended by the International Organisation of Vine and Wine guidelines is calculated 
and correlated with grape productivity data at the regional scale (Nomenclature of territorial units for statistics, 
NUTS, level 2) over the last 39 years (1980-2019). The study investigates how both long-term change and natural 
variability of the bioclimatic indices impacted on grape productivity. Both single and multi-regression ap-
proaches are applied to assess the portion of grape productivity variability explained by the selected indices. 

When the single-regression approach is applied, the correlations between bioclimatic indices and grape pro-
ductivity explain up to the 45 % of total production variability, however they are statistically significant only in 
few regions. Conversely, the multi-regression approach improves the proportion of variance explained and gives 
statistically significative results in region where the single regression is not statically significant. 
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The multi-regressive approach shows the added value of considering the interplay of different bioclimatic 
indices in explaining the overall variability of productivity. The possibility of using bioclimatic indicators as a 
proxy for grape productivity provides a simple tool that grape growers, wine consortia and policy makers can use 
to adapt to future climate.   

0. Introduction 

Viticulture is tightly dependent on weather and climate. Over the 
centuries, winegrowers have adapted to climatic conditions and found 
the best practices to successfully grow vines in different geographical 
areas. However, this equilibrium between climate and viticulture could 
be challenged by climate change (Palliotti et al., 2018). As highlighted 
by Monteleone et al., 2022, climate change has been considered in 
different studies in the assessment of crop vulnerability. The impact of 
climate variability and change on grapes has been the subject of many 
studies, showing how rising temperatures and changing rainfall patterns 
can affect grape growth (Droulia and Charalampopoulos, 2021; Jones, 
2007; Jones, 2003; Lena et al., 2012; Schultz, 2016). Temperature is the 
main driver for phenology (De Cortázar-Atauri et al., 2017) and a 
warmer climate may lead to an anticipation of the phenological phases 
and to a shortening of the growing cycle, which influence the quality of 
the harvest (Bock et al., 2013; Koufos et al., 2022). A change in the life 
cycle timing also increases frost risk, as budburst occurs earlier, when 
frost events are still likely to occur (Mosedale et al., 2015; Sgubin et al., 
2018), while variations in the precipitation pattern can increase the 
exposure to pest and diseases (Bois et al., 2017). Furthermore, important 
shifts in viticulture suitability are expected in many traditional wine- 
producing regions, including Italy, that can lead to a decline in pro-
duction (Hannah et al., 2013; Sgubin et al., 2023; Moriondo et al., 
2013). 

In Italy, wine represents the second most important exported product 
within the national agri-food sector, valued 7 billion euros in 2021, 
growing by 12.4 % compared to 2020 and 51.5 % compared to 2012 (Del 
Bravo et al., 2022). With almost 10 % of the world area devoted to wine 
production, Italy has been in 2022 the first wine producer in the world 
(49.8 million hectolitres), followed by France (45.6 Mio hl) and Spain 
(35.7 Mio hl) (OIV, 2023). 

Italian viticulture is a complex mosaic of appellation laws, driven by 
different climatic and environmental conditions and characterised by 
different vineyard management and resource optimisation strategies 
(Miglietta and Morrone, 2018). From a climatic point of view, Italy is 
classified as hot summer Mediterranean climate (Koppen-Geiger classi-
fication by Beck et al., 2018), with dry summers and wet winters, but the 
southwest is characterised by dryer conditions, especially inland, while 
the northeast is wetter and the complex orography can be characterised 
by very cold conditions (Fratianni and Acquaotta, 2017). Consequently, 
each region implements different cultivation styles, selected according 
to the needs of the area and the local climate. Thanks to this heteroge-
neity, Italy exhibits a high cultivar diversity hosting the top 80 most 
cultivated grape varieties (OIV, 2017). For premium wines in particular, 
the link between the type of wine produced and the home territory is of 
paramount importance, in terms of the grape variety selected, the soil 
property and viticultural practices used. This link is reflected in detailed 
specifications for vintage management and winemaking techniques 
(Gori and Alampi Sottini, 2014; Meloni et al., 2019). 

Being part of the Mediterranean region, Italy is a climate hotspot, i. 
e., a region where the impact of ongoing and future climate change on 
the environment and human activities are expected to be particularly 
severe (Giorgi, 2006; Lionello and Scarascia, 2018; Tuel and Eltahir, 
2020). In the past 20 years, European winegrowers already experienced 
the effect of higher temperatures and more frequent drought conditions 
on their activity. Those effects include variation in harvestable quanti-
ties, increase of pests and diseases, changes in phenology, increase in 
frost risk (Di Carlo et al., 2019; Van Leeuwen et al., 2019). In Italy the 

main effects reported are a decrease in quantity, an increase in diseases 
but also a higher wine quality (Battaglini et al., 2009). However, other 
factors, besides climate variability and change, can impact on wine 
production and productivity. The market can influence the choice of 
cultivars towards more profitable varieties, while viticultural practice 
can play a major role in ensuring a steady yield through the years (Basso, 
2019; Vinatier and Arnaiz, 2018). The most common adaptation stra-
tegies implemented to cope with the adverse effects of climate, are 
changes in rootstock, in pruning techniques and/or soil management 
that together with irrigation are useful against sunburn and heatwaves 
(Fraga, 2019; Keller, 2010). Also, the selection of new varieties can 
improve the drought resistance (Hayman and Longbottom, 2012), 
however the application of such a strategy in Italy would require a 
modification of the denomination law. Despite the possible adaptation 
strategies, a rapid change in climate conditions could place a strong risk 
on the sector especially in Italy, and winegrowers are calling for more 
reliable local information on future impacts of climate change on viti-
culture (Battaglini et al., 2009; Moriondo et al., 2011; Mozell and 
Thachn, 2014). Several approaches have been proposed to answer their 
call (Ferrise et al., 2016; Sgubin et al., 2023). The most common is based 
on bioclimatic indices developed from climate variables for specific 
plants and crops to effectively describe the plant-climate interactions 
(Santillán et al., 2020; Santos et al., 2020; Santos et al., 2019; Teslić, 
2018). The International Organisation of Vine and Wine (OIV) suggests a 
range of bioclimatic indices tailored to viticulture, based on temperature 
and heat accumulation (OIV, 2015; OIV, 2012). In addition, Badr et al. 
(2018), considering the work of (Blanco-Ward et al., 2007), suggest the 
use of precipitation-based. Bioclimatic indices are often used to assess a 
region’s suitability for viticulture or for zoning purposes (Cardell et al., 
2019; Irimia et al., 2013; Koufos et al., 2018; Mavromatis et al., 2022; 
Santos et al., 2012), but also used in relation with phenology and alcohol 
concentration (Dalla Marta et al., 2010; Teslić et al., 2018). To assess the 
impact on climate change and variability, bioclimatic indices are often 
analysed in correlation with specific phenological phases or harvest 
dates (Koufos et al., 2014). However, these types of datasets do not give 
indication on productivity. Alternatively phenological or crop models 
(e.g. Andreoli et al., 2019; Bonfante et al., 2017; Brisson et al., 2003) can 
be used to determine the wine production from climate variables, but 
their calibration requires a huge amount of input data (atmospheric 
variables minimum and maximum temperatures, radiation and rain-fall, 
soil hydrology and composition, variety characteristics, vineyard man-
agement information etc.) and thus the scalability of their results is 
limited. Fraga et al. (2012) and Santos et al. (2011) proposed a different 
approach developing complex statistical tools to estimates yield under 
present and future climate conditions for a small area in the Douro 
region. 

This study aims to bring new insight on the link between climate and 
grape production developing a simple statistical model that could sup-
port winegrowers in adapting to climate change. The present work fo-
cuses on Italy, at NUTS2 (Nomenclature of territorial units for statistics, 
level 2) scale, and specifically links grape productivity data (q/ha) for 
wine production with wine-relevant bioclimatic indices. To the best of 
the author’s knowledge of the existing literature, this is a new applica-
tion of bioclimatic indices and offers a viable alternative to the use of 
phenological information or harvest dates to assess the impact of climate 
variability and change on viticulture. Single and multi-regressive ap-
proaches are used to determine to which extent bioclimatic indices can 
explain the changes in Italian grape productivity over time at regional 
scale. The investigation is conducted on the raw data and on the high 
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frequency component of the time series (i.e., interannual), to assess the 
impact of both climatic trends and interannual climate variability. The 
proposed methodology can be easily applied in other countries and used 
to predict changes in wine productivity under future climate scenarios. 
In addition, it can represent the base for developing new climatic ser-
vices and parametric insurance models (Cesarini et al., 2021). 

1. Data and methods 

1.1. Grape productivity data 

The Italian National Institute of Statistics (ISTAT) collects yield data 
for several agricultural activities in freely available yearly publications; 
For the wine industry, ISTAT provides the amount of grape harvested for 
wine production (in quintals) and the extension of the vineyards (in 
hectares) from 1980 onwards. For the period investigated here, i.e., 
1980–2019, the data are not homogenous over time in terms of spatial 
aggregation. Between 1980 and 1993, and from 2006 to 2019, grape 
yield data are provided at provincial level (NUTS3), from 1994 to 2000 
at regional level (NUTS2), and from 2000 to 2005, at national level only 
(NUTS0). Thus, data have been homogenised on a spatial aggregation 
maximizing the temporal coverage. The national scale is discarded since 
it cannot properly account for the geographical variability of viticulture 
in Italy. Moreover, with only one harvest a year, the NUTS3 time series is 
too short (13 years) for the purposes of this study. Therefore, the NUTS2 
resolution is chosen for the following two reasons: first, it is the best 
compromise between temporal coverage and spatial aggregation given 
the dataset characteristics (i.e., it allows the longest possible time se-
ries), and secondly because viticultural policies are regulated at regional 
level. Thus, when NUTS2 data are not available, the quintals of grape 
harvested, and the hectares devoted to vineyards provided at NUTS3 
level are aggregated to NUTS2 level by computing the yearly sum of the 
provinces within the same region for the periods 1980–1993 and 
2006–2019. This operation produces a NUTS2-aggregation time series 
covering the periods 1980–2000 and 2006–2019 (35 years), which can 
frame the spatial variability of grape productivity with enough detail, 
partially considering local policies and viticultural practice. Grape 
productivity, here defined as grape yield (q) over hectares of vineyards, 
is used to investigate the impact of climate on wine production. 
Employing productivity instead of grape production allows the analysis 
to be independent from the changes in vineyard area. 

1.2. Bioclimatic indices 

An overview of the bioclimatic indices used in this study, with their 
formulas and acronyms, is presented in Table 1. Following the OIV 
recommendations, five indices based on temperature are selected:  

1. Mean temperature during vegetation period (TmVeg): daily mean 
temperature between 1st April to 31st October (Jones et al., 2005). 
The growing-season temperature plays a key role in determining the 
timing of the phenological phases with higher TmVeg leading to an 
anticipation of the phenological cycle (Malheiro et al., 2013). TmVeg 
temperatures above 24 ◦C and below 13 ◦C are classified as unfav-
ourable for vine cultivation (Eccel et al., 2016).  

2. Heliothermic Huglin index (HI): calculated as daily average between 
mean and maximum temperatures, relative to the baseline temper-
ature of 10 ◦C, when positive, otherwise equal to zero. Then the sum 
over the period 1st April - 30th September is corrected by a coeffi-
cient of day duration. The 10 ◦C temperature commonly defines the 
physiologically active state of the vine, i.e., the baseline temperature 
at which the vine begins its growth cycle (Huglin, 1978). Higher HI 
allows increased sugar content in the grapes, which can be desirable 
depending on the wine type. A climate with HI above 3000◦ day is 
classified as “very warm” and is associated to plant stress (Tonietto 
and Carbonneau, 2004) that, in turn, can lead to a reduction in 
production. Similarly, HI below 1200◦ day is considered “too cold” 
for vine growth (Tonietto and Carbonneau, 2004).  

3. Winkler degree days (WI): sum of daily mean temperatures above 
10 ◦C from 1st April to 31st October. WI provides information about 
the heat accumulation during the growing season (Amerine and 
Winkler, 1944; Piña-Rey et al., 2020). Analogous to HI, its values are 
connected to the rate of vine growth and the development of the 
fruits. In this case the “too hot” (“too cold”) threshold is suggested 
above 2700 (below 850) degree day (Eccel et al., 2016). 

4. Biologically Effective Degree Days (BEDD): sum of daily mean tem-
peratures between 10 ◦C and 19 ◦C from 1st April to 31st of October. 
Like WI and HI, BEDD uses a baseline temperature of 10 ◦C for plant 
growth, but adds a cut-off at 19 ◦C, above which additional growth is 
unlikely to happen (Gladstones, 1992). Values of BEDD higher than 
2000 and below 1000◦ day can negatively influence productivity. 
Gladstones (1992, 2011) proposed to adjust this index based on a 
daylength/latitude related factor as well as a daily temperature 
range factor to account for photosynthetic activity duration of 
grapevine. A simple version of the BEDDs is used here, with only the 
19 ◦C cut-off used, since the focus here is primarily on time related 
change of climate (and therefore the effect of latitude is small), and 
the BEDDs were only slightly affected when the daily temperature 
range was used.  

5. Cool Night Index (CNI): average minimum air temperature in 
September. The CNI is supposed to relate to the grape’s quality 
(Tonietto and Carbonneau, 2004), where high night temperature in 
September might lead to lower anthocyanin levels in grapes (Mor-
iondo et al., 2011). Low temperature during harvest period also 

Table 1 
Acronyms and formulas of the bioclimatic indices used in this study.   

Definition Formula Suitable class range 

Temperature- 
based 

Mean temperature during vegetation period 
(TmVeg) 

TmVeg = Tmean 

between 1st April to 31th October 
13–24 ◦C 
(Eccel et al., 2016) 

Heliothermic Huglin index (HI) 
HI = K

∑30 Sep
01 Aprmax

[(
(Tmean − 10) + (Tmax − 10)

2

)

;0
]

K = 1.04 length of days coefficient 

1200–3000 ◦C 
(Tonietto and Carbonneau, 2004) 

Winkler degree days (WI) 
WI =

∑31 Oct
01 Aprmax

[(
Tmin + Tmax

2
− 10

)

;0
]

850–2700 ◦C 
(Eccel et al., 2016) 

Biologically Effective Degree Days (BEDD) 
BEDD =

∑31 Oct
01 Aprmin

{

max
[(

Tmin + Tmax

2
− 10

)

; 0
]

; 9
}

1000–2000 ◦C (Gladstones, 1992) 

Cool Night Index (CNI) CNI =
1
30

∑30 Sep
01 Sep

Tmin 
12–18 ◦C (Tonietto and Carbonneau, 
2004) 

Precipitation- 
based 

Growing season precipitation index (GSP) GSP =
∑30 Sep

01 AprPrec 
Prec: total precipitation 

200–600 mm 
(Badr et al., 2018) 

Spring Rain index (SprR) SprR =
∑21 Jun

21 AprPrecmin  –  
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affects grapes’ quality, being quality of paramount importance for 
wine production, this index is here used in relation to productivity. 

Two precipitation-based indices focused on precipitation are also 
identified:  

1. Growing season precipitation index (GSP): rain accumulated from 
the 1st of April to the 30th of September. The GSP is relevant to 
assess the risk of grapevine exposure to water stress for not irrigated 
grapevine as by law in Italy (Blanco-ward et al., 2017; Blanco-Ward 
et al., 2007; Piña-Rey et al., 2020).  

2. Spring Rain index (SprR; Raül Marcos-Matamoros et al., 2020): rain 
accumulated between the 21st of April to the 21st of June. This 
measures the spring wetness: dry springs delay vegetative growth, 
while wet springs induce higher level of vigour in the plant and in-
crease fungal disease risk (Dell’Aquila et al., 2023). 

The computation of the bioclimatic indices is based on temperature 
and precipitation data extracted from the E-OBS dataset, a gridded daily 
observational dataset based on meteorological stations across Europe 
(Photiadou et al., 2017; Van Der Schrier et al., 2013). E-OBS data are 
provided on a regular latitude-longitude grid with spatial resolutions of 
0.1◦ (~11.1 km). The bioclimatic indices are calculated yearly for all E- 
OBS grid points over Italy below 1300 m s.l.a. Above 1300 m s.l.a., in 
Italy, there are no vineyards besides the 2.5 ha in the Sila National Park 
(Calabria) and some tiny parcels in South Tyrol, too small to be relevant 
for this study. Then the indices are aggregated at the NUTS2 scale by 
averaging across the E-OBS grid-points within each region. The time 
series of the bioclimatic indices in Sicilia ends in 2018 (instead of 2019), 
due to extensive data gaps in the E-OBS dataset, both in temperature and 
precipitation. 

1.3. Methods 

1.3.1. Trend analysis 
A trend analysis for the bioclimatic indices is performed to assess the 

evolution of the climatic condition in Italy in the period 1980–2019 
(with the exception of Sicilia, where time series cover the period 
1980–2018). The analysis is also extended to productivity, production, 
and vineyard area to frame the state of the business. The non-parametric 
Mann-Kendall test is used to verify the presence of a trend with a level of 
significance of 5 % (Hanif et al., 2022; Mann, 1945). Additionally, the 
magnitude of possible trend is estimated using Sen’s slope estimator (Kh 
Aswad et al., 2020). 

1.3.2. Single and multi-regressive approach 
For the single-regressive approach, the Spearman correlation coeffi-

cient between the time series of individual indices and grape productivity 
is computed at NUTS2 scale. The threshold for statistical significance is 
set to 95 %. Then, a multilinear regression (y = a*Index1 + b*index2 +
c*index3 etc) analysis is performed to explore the possibility that a 
combination of indices explains a higher portion of the productivity 
variability compared to an individual index. The best subsets regression 
technique is applied at regional level to identify the optimal combination 
of indices and relative coefficients for the statistical predictive model of 
grape productivity. This method aims to find the subset of predictors (in 
this case the bioclimatic indices) that best predicts the outcome variable 
(productivity) using all the possible combinations of predictors, while 
removing the irrelevant ones to simplify the model. The validation is 
based on the k-fold cross validation method that accounts for non- 
independent predictors (Kassambara, 2017). The data are first 
randomly divided into k subsets (k-fold) of approximately equal size, with 
k equals 5. One-fold (10 % of the data) serves as validation set and the 
remaining folds (90 % of the data) as training set. This procedure is 
repeated k times; for every iteration, different groups of data serve as 
training and testing sets, and the mean squared error is computed at each 

time. The model prediction error, i.e., cross validation error, is computed 
as the average of all the mean squared errors (James et al., 2021; Kuhn 
and Johnson, 2013; Wassennan, 2004). When the coefficient of deter-
mination, i.e., the adjusted R squared (AdjR^2), indicates a skilful model, 
the multi-regressive model is used to predict past productivity based on 
the selected bioclimatic indices. If the Pearson correlation between 
observed and predicted productivity is significant at the 95th level (p 
≤0.05), the variance explained by the multi-regressive model is 
compared to the maximum variance explained using one index at a time, 
to evaluate the added value of the multi-regression model compared to 
the single-regression method. 

The above-described analysis is performed first on raw data. Then, to 
isolate the interannual variability (i.e., the high frequency component) 
in the time series of both productivity and bioclimatic indices, the linear 
trend is removed from the raw series when a statistically significant 
trend is detected. In the time series not showing significant trends, the 
climatological mean is removed. The comparison of the raw data and the 
high frequency component correlations allows to determine the fraction 
of yield variability associated with the long-term trend (and possibly 
with a climate change signal) and the interannual (i.e., natural) vari-
ability, respectively. 

2. Results 

2.1. Grape productivity in Italy 

Fig. 1 shows the most productive areas in terms of (a) average annual 
productivity and (b) contribution to total Italian wine production. Some 
administrative regions with quite high average annual productivity, as 
Abruzzo and Trentino-Alto Adige (ABR, TRA > 100 q/ha), may limitedly 
contribute (<5 %) to the national production. Vice versa, regions like 
Sicilia (SIC), show a low productivity, but are major contributors to the 
Italian wine production (>15 %). This depends on the areas devoted to 
the vineyards (SIC ~137,000 ha, ABR 36700 ha, TRA 15200), and to the 
management techniques in place. 

Veneto (VEN), Puglia (PUG), Sicilia (SIC), in violet, followed by 
Emilia-Romagna (E-R) in red, are the most important wine producing 
regions in Italy explaining together more than half of the total national 
production (Fig. 1b). Other important wine-growing regions are Toscana 
(TOS), Piemonte (PIE), as well as Lombardia (LOM), well-known 
worldwide for the quality of their wines. PIE has the highest numbers 
of appellation of origin (DOC, DOCG) and geographical indications 
(IGP) in Italy, followed by TOS, VEN and LOM (Sarnari, 2022). 

2.2. Trend analysis 

Table 2 shows the trend analysis for both bioclimatic indices and 
productivity. The latter proves to be independent from the changes in 
vineyard-devoted area. Productivity shows significantly positive trends 
in Basilicata (BAS), Campania (CAM), Emilia Romagna (E-R), Friuli- 
Venezia Giulia (FVG), Puglia (PUG), Veneto (VEN), and negative only 
in Sicilia (SIC) and Trentino-Alto Adige (TRA), besides the strong 
reduction in vineyard area in all Italian regions, except TRA (Table A3). 
The temperature-based indices reflect in their trends the general tem-
perature increase in Italy reported in literature (Bartolini et al., 2008; 
Gentilucci et al., 2019; Toreti and Desiato, 2008). Indices including 
maximum temperature, i.e., BEDD, WI and HI, exhibit strongly positive 
trends everywhere and significance in almost all regions. On the con-
trary those based on mean or minimum temperature, although positive 
in most cases, show small and mainly non-significant slopes, especially 
CNI index. This is consistent with the more limited warming in autumn 
and winter observed in southern Europe in the 1985–2010 period (Van 
Den Besselaar et al., 2015). Precipitation-based indices show a less ho-
mogenous picture, but in general characterised by positive and signifi-
cant trends in the southern Italy, and negative, but mostly non- 
significant, trends in the central and northern regions. 
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2.3. Climate-productivity relationship 

The time series of the bioclimatic indices show values in classes not 
favourable to grapevine growth for temperature-based indices in 3 re-
gions (out of 20) among those contributing <5 % to the total Italian 
production (Fig. 1b). Specifically, “too-cold” BEDD values are observed 
in Friuli Venezia Giulia (FVG), Trentino-Alto Adige (TRA) and Valle 
d’Aosta (VDA), while HI, WI and TmVeg in the “too-cold” class are found 
in TRA and VDA (Fig. 1). However, this is not accompanied by a sig-
nificant decrease in productivity (Fig. A6), indicating on the one hand a 
high level of local adaptation to unfavourable climate conditions, and on 
the other hand the need to adapt the existing thresholds to the Alpine 
regions, like FVG, TRA and VDA. The occurrence of “very cool nights” is 
widespread in central and northern Italy, while warm nights affect 
southern regions (Puglia (PUG), Sardegna (SAR) and Sicilia (SIC)) but no 
statistically significant relationship with productivity can be found for 
CNI and precipitation-based indices (Fig. A6). 

During the four decades analysed, all temperature-based indices 
show positive correlations with the productivity over Italy, with the 
exception of a few regions; especially, Sicilia (SIC) is characterised by a 
strong negative correlation in all cases (Fig. 2). This could suggest that 
the winegrowing practices have adapted over time to the increasing 
temperature (Boselli et al., 2016). The strongest and statistically sig-
nificant correlations are found in the northeast Italy (VEN and E-R) and 
southern regions (PUG, BAS and CAM), among the regions contributing 
the most at the national wine production (cf. Fig. 2 to Fig. 1b). In VEN, 
HI index shows the highest correlation (almost 0.6), explaining up to the 
35 % of total productivity variability, while other temperature-indices 
(BEDD, WI, TmVeg) range from 27 % to 30 % of explained variability. 
E-R shows positive and significant correlation for BEDD and HI, between 
0.35 and 0.39, accounting for up to the 15 % of the total productivity 
variability. Similar ranges are found for the south of Italy in CAM, while 
the highest correlations (ρ = 0.56) are registered in PUG and BAS, where 
respectively BEDD and TmVeg explain the 31 % of the productivity 

variability. The CNI index shows significant correlations of almost 0.4 
only for PIE and PUG. This is not surprising since CNI is supposed to 
relate to grape quality rather than productivity. However, as quality is of 
paramount importance in the wine sector, the CNI could be indirectly 
linked to grape productivity since it is common practice to select grapes 
in the field before harvesting in order to preserve the quality of the final 
product. SIC stands out, being the only Italian region showing strongly 
negative and significant correlations for all temperature-based indices, 
ranging from 0.47 (CNI) to 0.68 (TmVeg), with TmVeg explaining up to 
46 % of the productivity variability. Temperature seems to have a strong 
effect on Sicilian grape productivity and the projected increase in tem-
perature (Bucchignani et al., 2016) could threaten production. SIC is 
also the only region showing a significant decreasing trend in both 
productivity and in vineyard-devoted area (Table A3). 

Precipitation-based indices show weaker correlation and no clear 
geographical pattern with respect to temperature-based indices. Statis-
tically significant results both for GSP and SprR are present only in the 
north-western Italy. Specifically in PIE, where those indices explaining 
up to 14 % of the variability, negative correlations suggest that an excess 
of rain is detrimental for the harvest, likely because of the triggering of 
fungus disease (Gessler et al., 2011; Launay et al., 2014). On the other 
hand, VDA, which is small contributor to the national wine production, 
presents positive and high correlations for both indices (ρ up to 0.4). 
Vineyards here could be less prone to fungus disease given the low 
temperature of the Alpine area, where VDA is located. However, the 
results might also be spurious since based on only four grid points given 
that most of the region lays above 1300 m s.l.a. 

Fig. 3a shows the Pearson correlation between the observed pro-
ductivity and the productivity predicted using the multi-regressive 
model (coefficients shown in Table A4), highlighting the relevant 
bioclimatic indices in each region. The model provides statistically sig-
nificant predictions in 14 out of 20 regions and with correlations above 
0.40 in 11 regions out of 20. It well represents the productivity of the 
biggest contributors to the Italian production, i.e., Veneto (VEN), Sicilia 

Fig. 1. Map of Italy showing a) yearly average productivity (q/ha) in the period 1980–2019 and b) contribution to the national total production in each region in 
percentage. The list of regions with their labels is reported in Table 2. 
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(SIC) and Puglia (PUG), with significant correlation between 0.45 and 
0.52 and performs equally well in regions like Piemonte (PIE) and 
Lombardia (LOM) known worldwide for the quality of their wines. The 
regions where the multi-regression model has no skill (i.e., low adjR2) 
are Toscana (TOS), Marche (MAR) and Abruzzo (ABR) (in grey), while is 
not significant in Umbria (UMB) Lazio (LAZ) and Valle d’Aosta (VDA). 
These regions do not show a significant correlation even with the single 
regression model. Several reasons could explain this result: climate may 
have a relatively low effect on vine growth, at least for the time being, 
other bioclimatic indices may be better suited for these regions; or local 
management practices have successfully adapted to mitigate the effects 
of climatic changes. Other types of intervention could also explain the 
lack of correlation, such as planting vineyards with more productive 
grape varieties, or the emergence of premium red wine, which favours 
grape production with a limited yield (Mannini, 2004). 

The advantage of the multi-regression model is its ability to account 
for the interplay of temperature and precipitation-based indices on 
productivity, while selecting only the most appropriate ones. The mul-
tiregressive approach also indicates that precipitation-based indices can 
be used to correctly predict productivity, while the single-regression 
model rarely reveals any significant correlation with those indices 
(Fig. 2). The most remarkable improvements are found in CAL, LOM, 
MOL and TRA, where the predictive model explains above 30 % of the 
variance while none of the index alone show significant correlation with 
productivity (Fig. 3b). Benefits are also significant for FVG (+25.3 %), 
LIG (+8.7 %) and CAM (+10.9 %) and for regions important for wine 
production like VEN (+17.1 %), PIE (+5.6 %), and E-R (+18.7 %). There 
is one cases where a worsening of the performance is found in BAS, 
although the extent of this decrease is <2 %. In conclusion, the multi- 
regressive model substantially increases the total variability in produc-
tivity explained by bioclimatic indices in most regions compared to the 
single-regression approach. Almost a third of the variance in produc-
tivity is explained in both the northern and southern regions with peaks 
of about 50 % in VEN and PUG, others non-climatic factor can contribute 
to the total variance (i.e., vineyard management, market laws, regula-
tions etc). 

2.4. Climate-productivity interannual relationship 

This section investigates to which extent the bioclimatic indices can 
explain the variability in productivity at the interannual time scale, 
starting from a single-regressive approach (Fig. 4). A similar pattern to 
the long-term changes is observed for both precipitation and 
temperature-based indices, although the correlations are substantially 
lower or not significant. This suggests that productivity is less affected 
by short-term climate fluctuations than by systematic changes with few 
exceptions. In LIG the temperature-based indices HI and WI show a 
statistically significant correlation at interannual time scale, explaining 
respectively the 13 % and 12 % of the productivity total variance. To 
note that HI shows a significant (positive) correlation also in the raw 
data, while WI does not (Fig. 2 vs Fig. 4). This indicates that LIG pro-
ductivity is sensible to HI in terms of both its long-term trend and 
interannual variability, while is affected by the year-to-year variation of 
WI but not by his trend (Fig. 2). A similar behaviour is observed in TRA 
for HI and WI that show significant positive correlations with produc-
tivity at the interannual time scale, explaining 21 % and 18 % respec-
tively, but not in raw data. CNI in PIE also shows a positive and 
significant correlation with productivity, thus PIE is sensitive to CNI at 
both time scales (Fig. 2). Regarding precipitation-based index, there are 
not significant result at the interannual time scale, suggesting that the 
year by year changing of precipitation has no impact on productivity. 

The multi-regressive model outperforms single-regressive approach 
finding significant correlations in regions where none of the bioclimatic 
indices alone can explain the interannual variability in productivity 
(Fig. 5b). Substantial improvements up to 44 % are found in MOL, and 
up to 23 % in CAL, VEN and E-R. The multi-regression allows an Ta
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improvement also in LIG (+13 %), and TRA (+33 %). 
The multi-regression analysis at interannual time scale provides 

significant results for 13 regions compared with the 14 obtained in the 
raw data analysis, and it explains similar portions of the variance. 
Finally, comparing the two multi-regression analysis (Fig. 5a compared 

to Fig. 3a), one can notice that most of the regions showing predict-
ability (PIE, LIG, FVG, VEN, E-R, CAM, CAL, SIC, TRA) are sensible to 
both long-term changes in the bioclimatic indices and their year-to-year 
variability. Instead, regions like LOM and PUG, are affected only by 
long-term trend and just UMB is affected only by interannual variability. 

Fig. 2. Maps of Italy showing the Spearman correlation coefficient between the observed productivity and the bioclimatic indices (raw data). The regions where 
correlations are significant are labelled. 
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3. Discussion 

The aim of this study is to explore, for the first time, a direct statis-
tical relationship between the bioclimatic indices commonly used in 
viticulture and grape productivity in Italy. The research, conducted at 
the regional scale (NUTS2) in Italy, use 35 years of wine grape pro-
ductivity data from ISTAT and climate variables from the observational 
dataset E-OBS. To understand to what extent the selected bioclimatic 
indices can explain the changes in grape productivity in the past, both 
single and multi-regressive approaches are investigated. In order to 
compare the impact of long-term changes and inter-annual variability, 
the analysis is carried out on both raw data and the data after the 
removal of long-term tendencies (see e.g. Koufos et al., 2022). 

The single-regression approach applied on raw data shows mainly 
positive correlations between productivity and temperature-based 
indices, highlighting how vineyard management has adapted over 
time to the increased temperature. Interestingly, for regions contrib-
uting the most to national wine production, like Veneto (VEN), Puglia 
(PUG) and Emilia-Romagna (E-R), a single index can explain up to 35 % 
of the variance in productivity. Similar results are found analysing data 
at interannual time scale, with mostly positive correlations, although the 
correlations are substantially lower and rarely significant. 

In Piemonte (PIE, north-western Italy), negative correlations are 
found for precipitation-based indices, suggesting that an excess of rain 
could lead to higher risk of fungus disease such as downy mildew and be 
detrimental for the harvest. In this region, a strong link between pre-
cipitation during spring and downy mildew treatments have been shown 
also in Salinari et al., 2006. Negative correlations with precipitation- 
base indices are also found at the interannual time scale in PIE, as 
well as in southern regions where rainfall is usually scarce, although 
these correlations are not statistically significant. 

Overall, the interannual climate variability impacts less on 

productivity than the long-term trends. The multi-regressive model, 
taking advantage from the interplay of temperature and precipitation- 
based indices, proves to be a powerful tool to predict Italian produc-
tivity over most regions, especially for raw data, i.e., for long-term 
tendencies. The multi-regressive model can explain up to 54 % vari-
ability in productivity at interannual time scale in Trentino Alto Adige 
(TRA), and up to 52 % in Veneto (VEN) and Puglia (PUG) at long term 
variability. Furthermore, this leads to large improvements in the 
explained productivity variance (e.g. in Trentino Alto Adige (TRA) the 
increase is 39 % for raw data, and 44 % in Molise (MOL) at interannual 
time scale), even when none of the bioclimatic indices alone exhibit 
significant correlations with productivity. The remaining unexplained 
variance can depend on other factors than climate that range from 
viticultural practices to quality of the data collected. A complete picture 
of all the factors contributing to the total variability require additional 
investigation and falls out of the scope of this work. 

The study highlights the need for better quality data, including its 
metadata, and the active involvement of local businesses and stake-
holders in impact studies to better frame the most relevant issue that 
they face due to climate variability both in the short- and long- term. In 
fact, vineyard management, soil type, variety choice, policies and the 
market can all affect grape productivity, in addition to climate and 
weather. A limitation of this research is that this information is not 
included in the ISTAT database. 

4. Conclusions 

This study investigates the impact of bioclimatic indices on wine 
grape production in Italy and results in the development of a multi- 
regressive model to simulate past productivity changes at the regional 
level. The methodology represents a novelty with regard to the use of 
bioclimatic indicators, which are most often used to assess regional 

Fig. 3. Maps of Italy showing raw data analysis. a) Pearson correlation coefficient between the observed productivity and the productivity predicted by the multi- 
regression model. Grey colour represent regions were the multi-regressive model has no skill, i.e. low AdjR^2. Donuts are displayed on regions where correlations are 
significant (p-value ≤ 0.05) and indicate which indices are included in the multi-regression. Within the donuts, orange (blue) colour indicates that temperature-based 
(precipitation-based) indices are included in the multi-regression model for the specific region, as the example in the bottom left corner shows. b) Difference between 
the variance explained using the multi-regression model and the maximum variance explained by a single index. Grey colour represent regions where the multi- 
regression model either has no skill or correlation is not significant (indicated with “—”). 
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suitability for viticulture, but without directly relating them to pro-
ductivity. The predictive models explain up to 52 % of the historical 
harvest variability and thus show potential for being a valuable tool to 
estimate future changes in productivity when used in conjunction with 
seasonal forecast and/or future climate projections. In addition, the 
proposed methodology tested for Italy can be easily applied to other 
countries and regions as well as at local scale. The involvement of wine 

consortiums could improve quality, resolution and information 
regarding the data and enhance the knowledge on specific climatic 
challenges the wineries are facing. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.167134. 

Fig. 4. As Fig. 2, but at interannual time scale. Maps of Italy showing the Spearman correlation coefficient between the observed productivity and the bioclimatic 
indices (raw data). The regions where correlations are significant are labelled. 

L. Massano et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.scitotenv.2023.167134
https://doi.org/10.1016/j.scitotenv.2023.167134


Science of the Total Environment 905 (2023) 167134

11

Boselli, M., Tempesta, G., Fiorilo, M., Brandi, M., 2016. Resistance and resilience to 
changing climate of Tuscany and Valpolicella wine grape growing regions in Italy. 
BIO Web Conf 7, 01012. https://doi.org/10.1051/bioconf/20160701012. 

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., 
Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., 
Gaudillère, J.P., Hénault, C., Maraux, F., Seguin, B., Sinoquet, H., 2003. An overview 
of the crop model STICS. Eur. J. Agron. 18, 309–332. https://doi.org/10.1016/ 
S1161-0301(02)00110-7. 

Bucchignani, E., Montesarchio, M., Zollo, A.L., Mercogliano, P., 2016. High-resolution 
climate simulations with COSMO-CLM over Italy: performance evaluation and 
climate projections for the 21st century. Int. J. Climatol. 36, 735–756. https://doi. 
org/10.1002/joc.4379. 

Cardell, M.F., Amengual, A., Romero, R., 2019. Future effects of climate change on the 
suitability of wine grape production across Europe. Reg. Environ. Chang. 19, 
2299–2310. https://doi.org/10.1007/s10113-019-01502-x. 

Cesarini, L., Figueiredo, R., Monteleone, B., Martina, M.L.V., 2021. The potential of 
machine learning for weather index insurance. Nat. Hazards Earth Syst. Sci. 21, 
2379–2405. https://doi.org/10.5194/nhess-21-2379-2021. 

Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G., Orlandini, S., 2010. 
Analysis of the relationships between climate variability and grapevine phenology in 
the Nobile di Montepulciano wine production area. J. Agric. Sci. 148, 657–666. 
https://doi.org/10.1017/S0021859610000432. 

De Cortázar-Atauri, I.G., Duchêne, É., Destrac-Irvine, A., Barbeau, G., De Rességuier, L., 
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Salinari, F., Giosuè, S., Tubiello, F.N., Rettori, A., Rossi, V., Spanna, F., Rosenzweig, C., 
Gullino, M.L., 2006. Downy mildew (Plasmopara viticola) epidemics on grapevine 
under climate change. Glob. Chang. Biol. 12, 1299–1307. https://doi.org/10.1111/ 
J.1365-2486.2006.01175.X. 

Santillán, D., Garrote, L., Iglesias, A., Sotes, V., 2020. Climate change risks and 
adaptation: new indicators for Mediterranean viticulture. Mitig. Adapt. Strateg. 
Glob. Chang. 25, 881–899. https://doi.org/10.1007/s11027-019-09899-w. 

Santos, J.A., Malheiro, A.C., Karremann, M.K., Pinto, J.G., 2011. Statistical modelling of 
grapevine yield in the Port Wine region under present and future climate conditions. 
Int. J. Biometeorol. 55, 119–131. https://doi.org/10.1007/s00484-010-0318-0. 

Santos, J.A., Malheiro, A.C., Pinto, J.G., Jones, G.v., 2012. Macroclimate and viticultural 
zoning in Europe: observed trends and atmospheric forcing. Clim. Res. 51, 89–103. 
https://doi.org/10.3354/cr01056. 

Santos, M., Fonseca, A., Fraga, H., Santos, J., Jones, G., 2019. Bioclimatic conditions of 
the Portuguese wine denominations of origin under changing climates. Int. J. 
Climatol. https://doi.org/10.1002/joc.6248. 

Santos, J.A., Santos, M., Fraga, H., Fonseca, A., 2020. Agroclimatic Zoning of Wine 
Denominations of Origin in Portugal: Current and Future Conditions, p. 810176. 

Sarnari, T., 2022. Istituto di Servizi per il Mercato Agricolo Alimentare Le caratteristiche 
della filiera - Scheda di Settore - Vino. 

Schultz, H.R., 2016. Global climate change, sustainability, and some challenges for grape 
and wine production. J. Wine Econ. 11, 181–200. https://doi.org/10.1017/ 
jwe.2015.31. 

Sgubin, G., Swingedouw, D., Dayon, G., García de Cortázar-Atauri, I., Ollat, N., Pagé, C., 
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APPENDIX B. A LOCAL SCALE ITALIAN STUDY OF THE 
IMPACT OF CLIMATE VARIABILITY ON WINE GRAPE 
PRODUCTIVITY USING A CONVECTIVE MODEL 

 

Supplementary data 
 

 

Figure A 2 a) FRA productivity data (1997-2019) calculated by aggregating the Franciacorta DOCG and 

Curtefranca DOC denominations and the LOM productivity data time series provided by ISTAT. b) MON 

productivity data (1989-2019) calculated by aggregating the Vino Nobile and Rosso di Montepulciano 

denominations and the TOS productivity data time series from the ISTAT database. 
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Figure A 3 Boxplot of the regional productivity (cyan) and consortia productivity (green). The series of 

LOM and TOS come from ISTAT database and cover the period 1980-2019, whit a six-year gap between 

2000-2005, the period available for FRA is 1997-2019 (calculated by aggregating the Franciacorta DOCG 

and Curtefranca DOC denominations) and for MON is 1989-2019 (calculated by aggregating the Vino 

Nobile and Rosso di Montepulciano denominations), with no gap in the series. 

Table A 4: results of Welch's t test and temporal correlation between regional ad consortia productivity 

data. The * symbol indicate a statistically significant results (p<=0.05), the degrees of freedom (DoF) for 

the t test based on the number of observations are computed according to the Welch’s equation for effective 

degrees of freedom (Welch, 1947). 

Consortium t.stat t.tab DoF Cor.Coef. 

FRA 1.17 2.01 47.94 0.62* 

MON 0.1 2 63.99 0.55* 
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Table A 5: Spearman correlation coefficient (ρ) and root mean squared error (RMSE) between SPHERA 

(E-OBS) and CPM, as well as  SPHERA (E-OBS) and RCM time series in the FRA and MON area. 

FRA 

 TM TX TN P 

 ρ 
RMSE 

(°C) 
ρ 

RMSE 

(°C) 
ρ 

RMSE 

(°C) 

ρ RMSE 

(mm) 

SPHERA CPM  0.95* 0.78 0.94* 1.54 0.96* 0.39 0.84* 233.52 

SPHERA vs 

RCM 

0.95* 

0.38 

0.96* 

1.73 

0.91* 

1.37 

0.73* 

415.05 

E-OBS vs CPM 0.76* 0.64 0.78* 0.6 0.55* 0.78 0.76* 435.99 

E-OBS vs RCM 0.85* 0.37 0.82* 0.43 0.58* 0.61 0.77* 266.65 

MON 

 TM TX TN P 

 ρ 
RSME 

(°C) 
ρ 

RSME 

(°C) 
ρ 

RSME 

(°C) 

ρ RSME 

(mm) 

SPHERA CPM  0.79* 1.06 0.81* 1.15 0.78* 0.58 0.78* 196.26 

SPHERA vs 

RCM 0.86* 0.91 0.92* 1.66 0.77* 0.77 0.78* 133.12 

E-OBS vs CPM 0.16 0.79 0.65* 0.85 -0.08 1.39 0.86* 177.98 

E-OBS vs RCM 0.06 0.83 0.52* 0.57 0.04 0.94 0.8* 128.03 
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Table A 6: Welch’s t-test between SPHERA (E-OBS) and CPM, as well as the SPHERA (E-OBS) and 

RCM time series in the FRA and MON.  For each variable (TM,TX,TN and P) the test statistics (t.stat), 

the t tabulated or critic (t.tab) for a 95% confidence interval and the degree of freedom (Dof) computed 

using Welch’s formula are reported. Bold font and an asterisk (*) indicate a significant p-value of <= 0.05, 

indicating the rejection of the null hypothesis (h0) and a statistically significant difference between the 

series. 

FRA 

 TM TX TN P 

 t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof 

SPHERA vs 

CPM  

4.16* 2.03 35.2 6.7* 2.03 34.25 -
2.31* 

2.03 35.96 -
2.07* 

2.03 35.85 

SPHERA vs 

RCM 

1.8 2.03 34.77 7.77* 2.03 34.83 -
8.26* 

2.03 35.59 -
4.48* 

2.03 35.47 

E-OBS vs 

CPM 

2.98* 2.03 33.1 -1.54 2.03 35.76 3.84* 2.03 36 4.93* 2.04 29.22 

E-OBS vs 

RCM 

0.5 2.04 32.45 -0.75 2.03 35.95 -
2.24* 

2.03 35.83 2.91* 2.04 32.58 

MON 

 TM TX TN P 

 t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof 

SPHERA vs 

CPM  

6.45* 2.03 35.57 5.24* 2.03 35.97 3.38* 2.04 32.37 2.33* 2.03 35.69 

SPHERA vs 

RCM 

5.72* 2.03 35.03 8.15* 2.03 35.83 -4.8* 2.04 32.12 1.3 2.03 35.91 
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E-OBS vs 

CPM 

-0.24 2.04 30.12 -

3.29* 

2.03 35.99 4.89* 2.06 24.89 2.37* 2.03 35.57 

E-OBS vs 

RCM 

-0.95 2.04 29.09 -0.81 2.03 35.76 -0.87 2.06 24.71 1.34 2.03 35.96 
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Table A 7 :Welch’s t-test between SPHERA (E-OBS) and CPM, as well as the SPHERA (E-OBS) and 

RCM time series in the FRA and MON.  For each bioclimatic index the test statistics (t.stat), the t 

tabulated or critic (t.tab) for a 95% confidence interval and the degree of freedom (Dof) computed using 

Welch’s formula are reported. Bold font and an asterisk (*) indicate a significant p-value of <= 0.05, 

indicating the rejection of the null hypothesis (h0) and a statistically significant difference between the 

series. 

FRA 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index 
t.stat t.ta

b 
Dof t.stat t.ta

b 
Dof t.stat t.ta

b 
Dof t.stat t.ta

b 
Dof 

Index 

BEDD 
(GDD) -0.92 

2.0
3 

35.9
7 -0.17 

2.0
3 

35.9
7 0.67 

2.0
3 

35.3
6 1.47 

2.0
3 

35.3
5 

BED
D 

(GDD) 

HI (GDD) 

-
4.50

* 
2.0
4 

32.5
0 

-
4.71

* 
2.0
3 

33.3
4 -0.88 

2.0
4 

32.1
4 -0.96 

2.0
3 

33.0
1 

HI 
(GDD) 

WI (GDD) 

-
4.48

* 
2.0
4 

32.6
8 

-
4.13

* 
2.0
4 

32.6
5 

-
3.25

* 
2.0
4 

30.2
9 

-
2.89

* 
2.0
4 

30.2
6 

WI 
(GDD) 

TmVeg (°C) 

-
4.59

* 
2.0
4 

32.6
0 

-
4.17

* 
2.0
4 

32.5
9 

-
3.28

* 
2.0
4 

30.5
4 

-
2.85

* 
2.0
4 

30.5
3 

TmVe
g (°C) 

TnVeg (°C) 
2.86

* 
2.0
3 

32.9
2 

5.35
* 

2.0
3 

35.8
7 -0.16 

2.0
4 

30.4
1 

2.42
* 

2.0
3 

34.6
3 

TnVe
g (°C) 

TxVeg (°C) 

-
8.32

* 
2.0
3 

32.8
2 

-
8.62

* 
2.0
3 

35.9
5 

-
5.47

* 
2.0
4 

30.1
0 

-
5.30

* 
2.0
3 

34.7
6 

TxVeg 
(°C) 

CNI (°C) 0.99 
2.0
3 

33.3
7 

2.29
* 

2.0
3 

35.1
6 -1.22 

2.0
3 

33.7
0 -0.11 

2.0
3 

35.3
7 

CNI 
(°C) 

TnRest -0.23 
2.0
3 

35.5
1 

2.69
* 

2.0
3 

35.4
0 

-
2.53

* 
2.0
3 

35.7
7 0.15 

2.0
3 

35.8
4 

TnRes
t 

GSP (mm) 
5.55

* 
2.0
3 

35.9
3 

8.76
* 

2.0
3 

33.9
4 

-
4.23

* 
2.0
4 

32.1
7 -1.48 

2.0
3 

35.2
0 

GSP 
(mm) 

SprR (mm) -0.03 
2.0
3 

36.0
0 1.92 

2.0
3 

35.1
8 

-
3.80

* 
2.0
4 

31.8
4 -1.86 

2.0
3 

34.3
8 

SprR 
(mm) 

MON 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index 
t.stat t.ta

b 
Dof t.stat t.ta

b 
Dof t.stat t.ta

b 
Dof t.stat t.ta

b 
Dof 

Index 

BEDD 
(GDD) 

-
2.25

* 
2.0
3 

35.8
8 

-
2.13

* 
2.0
3 

35.8
4 1.91 

2.0
3 

34.1
6 

2.04
* 

2.0
3 

34.0
4 

BED
D 

(GDD) 
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HI (GDD) 

-
3.31

* 
2.0
3 

34.1
1 

-
3.71

* 
2.0
3 

35.4
1 -1.37 

2.0
3 

33.3
5 -1.65 

2.0
3 

34.9
0 

HI 
(GDD) 

WI (GDD) 

-
5.21

* 
2.0
3 

34.3
8 

-
5.66

* 
2.0
3 

35.5
3 

-
2.14

* 
2.0
3 

36.0
0 

-
2.37

* 
2.0
3 

35.5
6 

WI 
(GDD) 

TmVeg (°C) 

-
5.38

* 
2.0
3 

34.5
9 

-
5.79

* 
2.0
3 

35.6
1 

-
2.06

* 
2.0
3 

35.9
6 

-
2.24

* 
2.0
3 

35.3
8 

TmVe
g (°C) 

TnVeg (°C) -0.54 
2.0
3 

35.9
1 

2.90
* 

2.0
3 

35.7
8 -1.35 

2.0
3 

33.9
0 1.70 

2.0
3 

33.4
4 

TnVe
g (°C) 

TxVeg (°C) 

-
5.43

* 
2.0
3 

35.9
8 

-
5.36

* 
2.0
3 

35.0
6 

-
3.74

* 
2.0
3 

35.8
6 

-
3.57

* 
2.0
3 

34.6
0 

TxVeg 
(°C) 

CNI (°C) -1.61 
2.0
3 

33.3
8 0.98 

2.0
3 

34.5
8 

-
3.31

* 
2.0
3 

34.9
6 -0.92 

2.0
3 

35.7
0 

CNI 
(°C) 

TnRest 

-
2.27

* 
2.0
3 

35.1
7 -0.82 

2.0
3 

34.4
5 

-
2.35

* 
2.0
3 

33.5
6 -1.01 

2.0
4 

32.5
7 

TnRes
t 

GSP (mm) -1.05 
2.0
4 

31.2
9 

2.46
* 

2.0
3 

35.0
2 

-
3.06

* 
2.0
5 

26.9
3 -0.04 

2.0
3 

35.7
4 

GSP 
(mm) 

SprR (mm) 

-
2.44

* 
2.0
5 

27.6
4 -0.44 

2.0
4 

31.3
3 

-
2.75

* 
2.0
4 

32.0
9 -0.95 

2.0
3 

35.1
8 

SprR 
(mm) 
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Table A 8: Sen's slope FRA, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

 FRA 
TM 

(°C/yr) 

TX 

(°C/yr) 

TN 

(°C/yr) 

P 

(mm/yr

) 

BEDD 

(GDD/yr) 

HI 

(GDD/yr) 

WI 

(GDD/yr) 

TmVeg 

(°C/yr) 

TnVeg 

(°C/yr) 

TxVeg 

(°C/yr) 

CNI 

(°C/yr) 

TnRest 

(°C/yr) 

GSP 

(mm/yr) 

SprR 

(mm/yr) 

E-OBS 0.05* 0.05 0.06* -5.91 4.59* 14.96* 11.67 0.06* 0 0.1 0.09 0.03 -4.77 -1.33 

SPHE

RA 
0.04 0.03 0.04* 12.89 4.5 9.25 6.65 0.04 0.02 0.05 0.1 0.02 13.32* 4.57* 

CPM 0.04 0.03 0.04 6.54 3.35 13.34 12.61 0.06 0.01 0.12 0.13* 0.05 -1.31 0.7 

RCM 0.05* 0.04 0.04* -2.14 4.19 11.51 11.94 0.06 0.05* 0.12* 0.12 0.07 -2.41 -0.15 

 

Table A 9: Sen's slope productivity FRA bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

FRA 

Productivity 

(q/ha)/yr 

slope 1.28* 
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Table A 10:Sen's slope MON, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

 MON 
TM 

(°C/yr) 

TX 

(°C/yr) 

TN 

(°C/yr) 

P 

(mm/yr

) 

BEDD 

(GDD/yr) 

HI 

(GDD/yr) 

WI 

(GDD/yr) 

TmVeg 

(°C/yr) 

TnVeg 

(°C/yr) 

TxVeg 

(°C/yr) 

CNI 

(°C/yr) 

TnRest 

(°C/yr) 

GSP 

(mm/yr) 

SprR 

(mm/yr) 

E-OBS -0.07* 0.04 -0.11* 8.64 -7.89* 1.23 -17.42* -0.08* -0.09 0.07 -0.07 0.03 4.38 0.07 

SPHE

RA 
0.03 0.01 0.03* 19.47* 2.94 5.05 7.22 0.03 0.1* -0.08* 0.12* 0 10.36* 0.99 

CPM 0.03 0.02 0.03* 5.28 2.42 6.84 3.68 0.02 0.05* 0.05* 0.15 0 0.74 1 

RCM 0.04 0.03 0.03* 6.28 1.2 10.5 9.31 0.04 0.06* 0.01 0.11* 0.06 -0.08 0.34 

 

Table A 11: Sen's slope productivity MON, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

MON 

Productivity 

(q/ha)/yr 

slope 0.43 
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Table A 12: ranking of the maximum variance (%) explained for each dataset divided by consortia, whit 

the indication of type of method used (SR: single regression, MR multi-regression) 

FRA MON 

Model var.value % type Model var.value % type 

RCM 64 % MR CPM 45 % MR 

SPHERA 56 % MR E-OBS 44 % SR 

CPM 48 % MR SPHERA 42 % MR 

E-OBS 42 % SR CPM 34 % SR 

SPHERA 36 % SR RCM 32 % SR 

E-OBS 35 % MR E-OBS 32 % MR 

RCM 35 % SR RCM 29 % MR 

CPM 34 % SR SPHERA 21 % SR 
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Abstract. Viticulture is tied to climate, it influences the suitability of an area, yield and quality of wine grapes. 

Therefore, traditional wine-growing regions could be threatened by a changing climate. Italy is at-risk being part of 

the Mediterranean climatic hotspot and judged in 2022 the second-largest exporter of wine worldwide.  The article 

explores the potential of climate models to predict wine grape productivity at local scale. To this end, both single and 10 

multi-regression approaches are used to link productivity data provided by two Italian wine consortia with bioclimatic 

indices. Temperature and precipitation-based bioclimatic indices are computed by using the observational dataset E-

OBS, the high-resolution climate reanalysis product SPHERA, and both the Regional and the Convection-permitting 

Climate Model (RCM and CPM). The potential of CPMs to represent the impact of climate variability on wine grape 

productivity at local scale in Italy is evaluated. The results indicate high correlations between some bioclimatic indices 15 

and productivity. Climate models appear to be a useful tool to explain productivity variance, however, the added value 

of CPM, became evident only when precipitation-based indices are considered. This assessment opens the path for 

using climate models, especially at convection-permitting scale, to investigate future climate change impact on wine 

production. 

1 Introduction 20 

Wine-growing has a strong socio-economic impact and is one of the principal agricultural economic activities in Italy, 

that in 2022 was the world's leading wine producer (49.8 million hl), and second largest wine exporter, with a value 

of 7.8 billion euros.  

Climate plays a significant role in viticulture, determining the suitability of an area and influencing wine grape yield 

and quality. Over the coming decades, the wine sector is expected to be affected by climate change especially in Italy 25 

that is part of the Mediterranean climatic hotspot (Tuel and Eltahir, 2020), where the impact of climate change is 

expected to be more severe than the global average (Bernetti et al., 2012; Sacchelli et al., 2016). In this context, many 

studies investigated the impact of rising temperatures and changing rainfall patterns on grape growth (Bagagiolo et 

al., 2021; Gentilucci, 2020). Temperature is the primary driver for the phenological phases (Fraga et al., 2016), and a 

warmer climate may lead to an earlier onset of phenological phases and to a shorter growing cycle, increase frost-30 

related risks, as budburst occurring earlier in spring, when frost events are still frequent (Lamichhane, 2021; Trought 

et al., 1999). Furthermore, traditional wine-producing regions, as Douro in Portugal, La Rioja in Spain, Bordeaux in 

https://doi.org/10.5194/egusphere-2024-941
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2 Data and Methods 

2.1 Wine grape data 70 

Wine grape yield data, as well as the hectares devoted to viticulture, are collected from two wine consortia in Italy: 

'Consorzio per la tutela del Franciacorta' (FRA) and 'Consorzio Del Vino Nobile di Montepulciano' (MON). The first 

one lies in Franciacorta, a small (200 km2) wine-growing region in Lombardia (LOM), in northern Italy, mostly 

known for sparkling wine (Figure 1a). The area is characterised by a humid subtropical climate according to the 

Koppen classification (Costantini et al., 2013). The Iseo lake, located at the northern border of this region, is the sixth 75 

largest lake in Italy and tempers the typical heat of the plain in summer, while in winter protects the vineyards from 

the freezing air arriving from the north (Leoni et al., 2019). The consortium was born in 1990 thanks to the endeavour 

of local producers that felt the need to preserve the original production method of the Franciacorta wine. Today the 

consortium is composed by 200 winemakers and preserves three designations: Sebino IGT (Typical Geographical 

Indication), Franciacorta DOCG (Denomination of Controlled and Guaranteed Origin) and Curtefranca DOC 80 

(Denomination of Controlled Origin), known as “Terre di Franciacorta” before 2011 (https://franciacorta.wine/en/). 

This analysis focuses on the designations of Franciacorta DOCG and Curtefranca DOC from 1997 to 2019 (23 years), 

discarding Sebino IGT, for which data are only available for a limited period.  

a) b) 

  

Figure 1 a) Area of Franciacorta Consortium (FRA), Lombardia (LOM) region, North of Italy. b) Area of the Consorzio 

del Vino Nobile di Montepulciano (MON), Toscana (TOS) region, centre of Italy (base layer : © OpenStreetMap 85 
contributors 2019. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.). 

The “Consorzio del Vino Nobile di Montepulciano” (MON) (https://www.consorziovinonobile.it/) is located within 

the Montepulciano territory in Toscana (TOS) region in the centre of Italy  (Figure 1b). The area is characterized by 

a Mediterranean climate with hot and dry summer, and mild and rainy winters (Costantini et al., 2013). The consortium 

preserves three designations, namely Vino Nobile di Montepulciano DOCG, Rosso di Montepulciano DOC and Vin 90 

Santo di Montepulciano DOC. The study focuses on the first two designations that have the longest time series 

covering 31 years between 1989 and 2019.  

For each wine designation, the FRA consortium directly reports the quantity of grapes harvested in quintals (q), while 

MON indicates the hectolitres of wine produced (hl) and the maximum percentage of the grape yield convertible into 

wine (70%). For the analysis, the hectolitres are converted into quintals using the maximum percentage allowed, and 95 

then the productivity (q/ha) is calculated by dividing the quintals of grapes by the vineyard area.  

To check the consistency of productivity data between local and regional scales, and thus contextualise this work 

within the broader framework of previous studies (e.g. Di Paola et al., 2023), the productivity at the local scales (FRA 
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France, and Tuscany in Italy, are expected to experience important shifts in viticulture suitability that can consequently 

causes a decline in production (Adão et al., 2023; Rafique et al., 2023; Sgubin et al., 2023; Tóth and Végvári, 2016). 

A common tool to investigate the impact of climate variability and change on the wine sector is the use of bioclimatic 35 

indices, developed from climate variables for specific plants and crops (Badr et al., 2018; Chou et al., 2023; Gaitán 

and Pino-Otín, 2023). A set of bioclimatic indices, based on temperature and heat accumulation (OIV, 2015), was 

proposed by the International Organisation of Vine and Wine (OIV), while precipitation-based indices were developed 

by Badr et al., (2018) considering the research of Blanco-Ward et al. (2007). Bioclimatic indices are commonly used 

to assess a region's suitability for viticulture or zoning purposes, as well as in relation to phenology, harvest date and 40 

alcohol concentration (Dalla Marta et al., 2010; Koufos et al., 2014; Sánchez et al., 2019; Teslić et al., 2018). A novel 

application linking bioclimatic indices directly to wine grape productivity data in Italy was proposed by Massano et 

al., (2023) at regional level. 

In Italy the vineyards are planted in extremely different areas, from the coasts to the hills, in some case also at 

considerable altitude (Tarolli et al., 2023). The wine production system is complex and fragmented, including both 45 

small farms and large companies. To valorise the designation of origin and guarantee a defined level of quality, 

producers are organized in wine consortia (Consorzi di Tutela) according to the EU and national regulations (e.i. 

Regulation (EU) No 1308/2013, Disciplinari regionali) (Gori and Alampi Sottini, 2014; Ugaglia et al., 2019). To 

address this fragmentation and account for the typicity of the wine business (Agnoli et al., 2023; Spielmann and 

Charters, 2013), yield data from the wine consortia and high-resolution climate data are of prominent importance for 50 

local-scale impact studies and, thus for effective adaptation strategies.  

In the context of impact studies at local scale, requiring high-resolution climatic data, the use of km-scale convection 

permitting models (CPM) is increasing (Bamba et al., 2023; Le Roy et al., 2021; Tradowsky et al., 2023). Thanks to 

their high spatial resolution (less than 4 km), CPMs can represent convection explicitly without the need for 

parameterisation, thus reducing the associated model uncertainty (Fosser et al., 2024). Compared to coarser resolution 55 

regional climate models (RCMs), the CPMs represent more realistically hourly rainfall intensity, the diurnal cycle of 

precipitation and the extremes and are thus consider more reliable in terms of climate projections of precipitation 

(Brisson et al., 2016; Coppola et al., 2020; Fosser et al., 2020, 2015; Kendon et al., 2017; Pichelli et al., 2021; Ban et 

al., 2021). The advantages of CPMs versus RCMs has been also explored in the assessment of the impact of climate 

change on agriculture and crop production (Agyeman et al., 2023; Berthou et al., 2019; Chapman et al., 2020, 2023). 60 

This study assesses the potential of a CPM to represent the impact of climate variability on wine grape productivity at 

the local scale, by relating temperature and precipitation-based bioclimatic indices to wine productivity data provided 

by two wine consortia in northern and central Italy. The CPM performance is validated against climate observations 

and a reanalysis product, as well as compared to the driving RCM simulation to investigate the added-value of the 

higher resolution. Single and multiple regression approaches are used to determine the extent to which bioclimatic 65 

indices can explain changes in wine grape productivity at local scale. The multiple regression approach accounts for 

the potential interplay between the bioclimatic indices, potentially increasing the portion of total productivity 

variability explained by the individual indices, as found by Massano et al. (2023). 
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and MON) is compared with the productivity at regional scale provided by the Italian National Institute of Statistics 

(ISTAT). ISTAT provides the harvested wine grape (in quintals) and the area devoted to vines (in hectares) from 1980 100 

onwards. However, the data are not homogenous over time in terms of spatial aggregation. Wine grape productivity 

data are available at the provincial level between 1980 and 1993 and from 2006 to 2019; at regional level between 

1994 and 2000; at national scale while from 2000 to 2005. Following Massano et al (2023), the data were aggregated 

at regional level for Lombardia (LOM) and Toscana (TOS) region, where the FRA and MON consortia are 

respectively located, for the period 1980–2019, with a six-year gap between 2000 and 2005. Considering the 105 

overlapping periods between ISTAT and consortia time series, it is found that the regional and local productivity data 

are significantly correlated (p<=0.05) for both FRA and MON (Table A 1). In addition, the Welch's t-test proves that 

both consortium distributions are part of the regional population (Table A 1 and Figure A 1).  

2.2 Observational climate data 

The observational dataset used is E-OBS, a gridded daily data set covering Europe from January 1950 to the present 110 

day. E-OBS is constructed using data from meteorological stations provided by the European National Meteorological 

and Hydrological Services (NMHSs) or other data holding institutions (Photiadou et al., 2017; Van Der Schrier et al., 

2013). The analysis is based on the latest available version (v28) at 0.1 deg (~11 km). Although the E-OBS database 

is frequently used to validate climate models (Lorenz and Jacob, 2010; Retalis et al., 2016; Christensen et al., 2008; 

Jaeger and Seneviratne, 2011) , some studies have pointed out limitations in the E-OBS representation of precipitation 115 

and temperature, mainly due to the inhomogeneity of the station network used for interpolation (Kyselý and Plavcová, 

2010; Van Der Schrier et al., 2013; Liakopoulou and Mavromatis, 2023). 

In addition to observations, the analysis uses a high-resolution convection-permitting reanalysis product, called 

SPHERA (High rEsolution ReAnalysis over Italy; Cerenzia et al., 2022; Giordani et al., 2023), produced by ARPAE-

SIMC (Agency for Environmental Protection of the Emilia Romagna Region, Italy). Based on the non-hydrostatic 120 

limited-area model COSMO (Schättler et al., 2018; Baldauf et al., 2011), SPHERA dynamically downscales the global 

reanalysis ERA5 (Hersbach et al., 2020) assimilating regional in situ observations to improve the quality of the 

simulation. This new reanalysis product covers Italy at a horizontal resolution of 2.2 km with a temporal coverage of 

26 years (1995-2020). SPHERA reanalysis, validated against ERA5 by Giordani et al. (2023), shows added value for 

the description of moderate to severe local precipitation events and extreme rainfall. The performance of SPHERA 125 

demonstrates that it can be a valuable resource for improving climate monitoring by providing insights into regional 

climate change impacts (Giordani et al., 2023). 

2.3 Climate model data 

The French Centre National de Recherches Météorologiques (CNRM) provides two climate simulations for the period 

2000-2018. The first simulation is based on an RCM model, CNRM-ALADIN (Nabat et al., 2020), covering the Med-130 

CORDEX domain, driven by the ERA-Interim (80 km) reanalysis (Dee et al., 2011), while the second one is based on 

a CPM model, CNRM-AROME, covering the pan-Alpine domain defined within the CORDEX FPS on Convection 

programme (Lucas-Picher et al., 2023; Coppola et al., 2020).  CNRM-ALADIN (hereafter RCM) has a horizontal 
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resolution of 12.5 km and is the limited area version of ARPEGE-Climate. CNRM-AROME (hereafter CPM), is a 

convection-permitting model dynamically downscaled form CNRM-ALADIN, with a resolution of 2.5 km. CPMs are 135 

kilometer-scale regional climate models, with typically horizontal gridding of less than 4 km, which allows a more 

accurate representation of surface and orographic features. They are also non-hydrostatic models that can explicitly 

resolve deep convection and therefore better represent convective phenomena, such as heavy convective precipitation. 

Further information on these climate model simulations can be found in (Caillaud et al., 2021) 

2.4 Bioclimatic indices 140 

This study considers ten bioclimatic indices (summarised in Table 1): eight of them, recommended by the International 

Organisation of Vine and Wine (OIV), are based on temperature and heat accumulation, while the other two are based 

on rainfall accumulation.  

The temperature-based indicators are: 

1. Daily mean temperature during vegetation period (TmVeg) calculated between 1st April to 31st October (Jones et 145 

al., 2005). Temperature in spring plays a key role in determining the timing of the phenological events, as underlined 

by Malheiro et al., (2013). In general, higher TmVeg leads to an anticipation of the phenological phases, while TmVeg 

values above 24 °C or below 12 °C are considered unfavourable to wine-growing (Eccel et al., 2016). 

2. Heliothermic Huglin index (HI), which is calculated by summing, when positive, the average between the mean 

and the maximum temperature, in relation to the baseline temperature of 10°C i.e. the physiological threshold for the 150 

start of the vine growth cycle (Huglin M, 1978; Teslić et al., 2018), over the period from 1st April to 30th September 

and corrected by a coefficient of day duration. The HI index is tied to vine growing and grape sugar concentration 

with higher HI leading to an increased vine vigour and higher sugar content in the grapes. According to Tonietto and 

Carbonneau (2004), a climate with a heat index (HI) of more than 3000 degrees per day is classified as 'very warm', 

while below 1200 degrees per day is “too cold”. Both these situations are associated to plant stress and thus lead to a 155 

production reduction. 

3. Winkler degree days (WI), which provides a measure of heat accumulation during the growing season, is the sum 

of daily mean temperatures above 10°C from 1st April to 31st October (Amerine and Winkler, 1944; Piña-Rey et al., 

2020). Similarly, to HI, WI index is linked to the rate of growth of the vines and the development of the fruits, with 

values between 850 and 2700 degree days being optimal for the wine production (Eccel et al., 2016). 160 

4. Biologically Effective Degree Days (BEDD), which is the sum of daily mean temperatures in the range between 10 

°C and 19 °C, from 1st April to 31st of October. The BEDD index uses the same baseline temperature (10 °C) as WI 

and HI indices but also take into consideration that vine growth is unlikely to occur above the upper temperature 

threshold of 19°C (Anderson et al., 2012; Gladstones, 1992). As the previous temperature-based indices, too high 

(above 2000 degrees per day) or too low (below 1000 degrees per day) values of BEDD can potentially reduce 165 

productivity. 

5. Cool Night Index (CNI), defined as the average minimum air temperature during the month of September. Low 

minimum temperatures in September increase the polyphenolics in the grapes and are beneficial for the overall quality 
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of the harvest (Tonietto and Carbonneau, 2004). Although CIN is more related to grape quality than quantity, Massano 

et al (2023) found that this index can help explaining changes in productivity especially when used in combination 170 

with other bioclimatic indices.  

6. Minimum temperature during vegetative period (TnVeg), which is the minimum temperature recorded during the 

vegetative period (1st April to 31st October). This index is important to assess the occurrence of spring frosts that 

pose a significant risk to viticultural practices and production. The damage threshold is fixed at -2 °C (Sgubin et al., 

2018).   175 

7. Maximum temperature during vegetative period (TxVeg), which is the maximum temperature recorded during the 

vegetative period. This index is useful for assessing the occurrence and the severity of summer hot-spells that can 

damage to vineyard, thus reducing the wine productivity (Cabré and Nuñez, 2020). The heat stress threshold is set at 

35°C, above which physiological damage to the vines is expected (Hunter and Bonnardot, 2011). 

8. Minimum temperature during rest period (TnRest), defined as the minimum temperature during rest period, i.e. 1st 180 

November to 31st March. This index is used to determine winter severity. Grapevines can tolerate temperatures as -

25 °C (Düring, 1997; Lisek, 2012), although damage can already occurs at -15 °C  (Eccel et al., 2016) 

The indices based on precipitation are: 

1. Growing season precipitation index (GSP), defined as rainfall accumulated from 1st April to 30th September and 

used to assess the water stress for non-irrigated grapevines (Blanco-Ward et al., 2007; Piña-Rey et al., 2020), as in 185 

Italy where irrigation is only allowed in extreme cases (e.g. long drought periods). 

2. Spring Rain index (SprR), which measures the amount of rain accumulated between the 21st of April and the 21st 

of June (Raül Marcos-Matamoros et al., 2020). This indicator of spring wetness can be related to production. In fact, 

while dry springs can delay vegetative growth, wet ones can increase plant vigour but also lead to a higher risk of 

fungal diseases (Alessandro Dell’Aquila, 2022). 190 

Table 1: Acronyms and formulas of the bioclimatic indices used. 

 Definition Formula Suitable class range 

Te
m

p
er

at
u

re
-b

as
ed

 

Mean temperature during 

vegetation period (TmVeg) 

𝑇𝑚𝑉𝑒𝑔 = 𝑇𝑚𝑒𝑎𝑛          (1) 

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1𝑠𝑡 𝐴𝑝𝑟𝑖𝑙 𝑎𝑛𝑑 31𝑡ℎ 𝑂𝑐𝑡𝑜𝑏𝑒𝑟 

13-24 °C 

(Eccel et al., 2016) 

Heliothermic Huglin index (HI) 

𝐻𝐼 = 𝐾 ∑ 𝑚𝑎𝑥 [(
(𝑇𝑚𝑒𝑎𝑛−10)+(𝑇𝑚𝑎𝑥−10)

2
) ; 0]

30𝑆𝑒𝑝
01𝐴𝑝𝑟           (2) 

K=1.04 length of days coefficient 

1200-3000 °C 

(Tonietto and 

Carbonneau, 2004) 

Winkler degree days (WI) 𝑊𝐼 = ∑ 𝑚𝑎𝑥 [(
𝑇𝑚𝑖𝑛+𝑇𝑚𝑎𝑥

2
− 10) ; 0]31𝑂𝑐𝑡

01𝐴𝑝𝑟           (3) 

850-2700 °C 

(Eccel et al., 2016) 

Biologically Effective Degree Days 

(BEDD) 
𝐵𝐸𝐷𝐷 = ∑ 𝑚𝑖𝑛{𝑚𝑎𝑥 [(

𝑇𝑚𝑖𝑛+𝑇𝑚𝑎𝑥

2
− 10) ; 0] ; 9}31𝑂𝑐𝑡

01𝐴𝑝𝑟           (4) 
1000-2000 °C 

(Gladstones, 1992) 

Cool Night Index (CNI) 𝐶𝑁𝐼 =
1

30
∑ 𝑇𝑚𝑖𝑛

30𝑆𝑒𝑝
01𝑆𝑒𝑝           (5) 

12-18 °C (Tonietto 

and Carbonneau, 
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2004) 

Minimum temperature during 

vegetative period (TnVeg) 𝑇𝑛𝑉𝑒𝑔 = 𝑇𝑚𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝐴𝑝𝑟 𝑎𝑛𝑑 31 𝑂𝑐𝑡          (6) 

Damage threshold -

2 °C (Sgubin et al., 

2018) 

Maximum temperature during 

vegetative period (TxVeg) 
𝑇𝑥𝑉𝑒𝑔 = 𝑇𝑚𝑎𝑥 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝐴𝑝𝑟 𝑎𝑛𝑑 31 𝑂𝑐𝑡          (7) 

Upper threshold 35 

°C (Hunter and 

Bonnardot, 2011) 

 

Minimum temperature during 

rest period (TnRest) 
𝑇𝑛𝑅𝑒𝑠𝑡 = 𝑇𝑚𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝑁𝑜𝑣 𝑎𝑛𝑑 31 𝑀𝑎𝑟          (8) 

Above -25 °C 

(Düring, 1997; Lisek, 

2012) 

P
re

ci
p

it
at

io
n

-

b
as

ed
 

Growing season precipitation 

index (GSP) 

𝐺𝑆𝑃 = ∑ 𝑃𝑟𝑒𝑐
30𝑆𝑒𝑝
01𝐴𝑝𝑟           (9) 

Prec: total precipitation 

200-600 mm 

(Badr et al., 2018) 

Spring Rain index (SprR) 𝑆𝑝𝑟𝑅 = ∑ 𝑃𝑟𝑒𝑐21𝐽𝑢𝑛
21𝐴𝑝𝑟           (10) (Dell’Aquila, 2022) 

2.5 Validation of climate simulations and calculation of bioclimatic indices 

In this work, temperature and precipitation data from the observational dataset E-OBS, the climate reanalysis product 

SPHERA and the climate model simulations, at regional (RCM) and convection-permitting scale (CPM), are used for 

the calculation of the above-described bioclimatic indices. The analysis focuses on the 19 years from 2000 to 2018 195 

that is the longest period available for RCM and CPM simulations and in common with E-OBS, SPHERA as well as 

FRA and MON productivity data. 

To compare the observational datasets and climate simulations among each other (Berg et al., 2013), they are first all 

remapped on a common grid, i.e. E-OBS regular grid, at ~11 km. Tests performed to investigate the effects of the 

remapping strategy on the climate variables showed that the results are not impacted by the resolution chosen for the 200 

remapping (not shown).  

Then, the climatic variables (i.e. P: Precipitation; TM: mean temperature, TX: max temperature and TN: min 

temperature) are retained on all available grid cells within the areas of interest (LOM and TOS). Subsequently, the 

consortium territory is cropped using the respective shape files of FRA and MON. Finally, the spatial average is 

calculated by weighing the contribution of each grid cell according to the percentage of the cell falling within the 205 

consortium territory. The shape file of the FRA consortium's territory is provided directly by the consortium’s 

technical office, while the shape file for MON is created by selecting the municipality listed in the appellation 

regulation for the relevant denominations (i.e., Montepulciano municipality). The same methodology is used to 

calculate the bioclimatic indices.  

The precipitation and temperature time series of the climate simulations are analysed against the observational datasets 210 

to evaluate the biases in the climatic conditions in the region of interest, prior to examine the bioclimatic indices. In 
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particular, the CPM performance is evaluated for the common period 2000-2018 against both SPHERA and E-OBS 

and compared to the RCM. In this study, the new SPHERA reanalysis product is used as a reference dataset together 

with the E-OBS dataset, which is already widely used for model validation (Kyselý and Plavcová, 2010). SPHERA 

and E-OBS time series together provide a range within which the CPM and the RCM time series are expected to fall, 215 

similar to a ‘confidence interval’.  

The comparison between SPHERA (E-OBS) and CPM, as well as SPHERA (E-OBS) and RCM, is carried out by 

computing the Spearman correlation and RSME, the percentage differences of RMSE with the mean of the reference 

(SPHERA and E-OBS) (RMSE%) is also indicated for the cumulable variables (i.e. BEDD, HI, WI,GSP, SprR and 

precipitation). This allows to analyse whether the variability of SPHERA and E-OBS data is reproduced by CPM and 220 

RCM simulations and asses the biases between model simulations and both reanalysis and observations. Statistical 

significance of the differences between model simulations and both reanalysis and observations is assessed by a 

Welch’s two-tailed t-test, with a 95% level of confidence.  

Finally, a trend analysis for both the climatic variables and the bioclimatic indices is performed to assess the evolution 

of the climatic condition in FRA and MON in the period 2000-2018; the same analysis is also carried out for 225 

productivity data. The non-parametric Mann-Kendall test and the Sen's slope estimator are used to determine the 

presence and the magnitude of trends with a significance level of 95% (Hanif et al., 2022; Mann, 1945). The 

assessment of possible trends aims to investigate whether the long-term component of variability may be dominant 

over the interannual component. 

2.6 Single and multi-regression approach 230 

The Spearman correlation coefficient between each bioclimatic index and wine grape productivity is calculated for 

both consortia area and the threshold for statistical significance is set to 95%. This analysis aims at assessing the 

fraction of wine grape productivity variability explained by the bioclimatic indices and the ability of climate models 

to represent this relationship compared to the observational datasets.  

Furthermore, a multi-regressive (MR) approach is applied to determine whether a linear combination of indices can 235 

enhance the total productivity variability explained by the bioclimatic indices (Massano et al., 2023). The best subsets 

regression technique is used to establish the most suitable combination of indices. This approach seeks the predictor 

subset of bioclimatic indices that most accurately predicts the outcome variable, i.e. the productivity. It examines all 

feasible predictor combinations and removes irrelevant ones to streamline the model. The k-fold cross validation 

method is employed to identify the optimal model (Kassambara, 2017). This method performs cross-validation by 240 

randomly dividing the data into k subsets (k-fold) approximately of equal size, with k typically set to 5 or 10 (here k 

= 5 is used). One of the folds serves as test set and the remaining as training. This process is repeated k times, whereby 

varying groups of data are utilized as training or testing sets. Subsequently, the mean squared error is computed. The 

average of the mean squared errors of all iterations is the model prediction error (CV - cross validation error) (James 

et al., 2021; Kuhn and Johnson, 2013; Wassennan, 2004). The performance of the multi regressive model is assessed 245 
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by the adjusted R-squared coefficient of determination (AdjR2), while the p-value is used to determine statistical 

significance at 95% level. The so optimised multi-regression model is then used to predict the past productivity, which 

is compared to the observed productivity using the Pearson correlation. When the MR method provides statistically 

significant results, the variance explained by the MR model is compared with the maximum variance explained by SR 

to determine which method provides the best performances. 250 

3 Results 

3.1 Validation of the climate simulations 

The precipitation and temperature time series of both CPM and RCM are validated against the observational datasets 

to evaluate the biases in the climatic conditions of the consortia (FRA and MON), which could lead to biases in the 

bioclimatic indices. To this end, Figure A 2 for FRA, and Figure A 3 for MON, show the precipitation (P) and 255 

temperature (TM: mean temperature, TX: max temperature and TN: min temperature) time series of E-OBS, 

SPHERA, RCM and CPM for the common period 2000-2018. In MON, E-OBS minimum temperature time series 

shows a strong decrease of almost 2°C between 2015 and 2018 (Figure A 3), which is not observed in any of the other 

datasets. Further investigations highlighted that this temperature fall affects the entire TOS and is inconsistent with 

other observational records (not shown). This E-OBS misrepresentation of the temperature field affects 260 

consequentially the mean temperature time series (Figure A 3), the temporal correlations (Table A 2), and is likely to 

be reflected in the temperature-based indices. Previous studies have shown that E-OBS underestimates monthly and 

seasonal average temperatures when compared to stations observations (Liakopoulou and Mavromatis, 2023). In 

general, both RCM and CPM show high and significant temporal correlations with SPHERA for all the climate 

variables in both consortia (Table A 2), indicating that RCM and CPM reproduce the same variability of SPHERA, 265 

although the climate simulations tend to overestimate mean and maximum temperature while underestimating the 

minimum, as reflected by the statistical differences in mean values (Table A 3). In FRA the variability observed in E-

OBS is always reproduced also in RCM and CPM simulations. The Welch's t-test confirmed that E-OBS is closer in 

mean value to RCM than CPM simulations. Figure 2 and Figure 3 show the ten bioclimatic indices time series 

computed in the two consortia areas for E-OBS, SPHERA, RCM and CPM. All the bioclimatic indices show very 270 

high and significant temporal correlation between SPHERA and both RCM and CPM in both consortia (Table 2). 

Similar conclusion can be draw for the comparison of the climate models with E-OBS in FRA, while in MON four 

temperature-base indices (i.e. BEDD, WI, TnVeg, CNI) are not significantly correlated, likely due to the low 

correlations in medium and minimum temperature (Table A 2). The correlations, especially with SPHERA, tend to be 

slightly higher for the CPM than for the RCM for most indices, despite the higher RMSE in the CPM (Table 2). The 275 

strong correlation between SPHERA and climate simulations ( Table 2) indicates that RCM and CPM reproduce the 

same variability of SPHERA, despite the statistical differences in mean values (Table A 4). The same conclusion is 

valid also for the comparison of RCM and CPM to E-OBS. This analysis suggests both CPM and RCM could be a 

valid alternative to observational datasets to investigate the impact of climate on viticulture, despite the biases affecting 

the climate simulations. 280 
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Figure 2: Bioclimatic indices time series 2000-2018, averaged on the FRA consortium area.  
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Figure 3 Bioclimatic indices time series 2000-2018, averaged on the MON consortium area. 
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In FRA, the correlation coefficients are similar between climate simulations, observations, and reanalysis for the 

temperature-based indices, while diverge and are not significant for the precipitation-based ones (Figure 4). Few cases 295 

are statistically significant: CNI with model simulations, SPHERA, and E-OBS; the BEDD index only when RCM 

and E-OBS are used. In these cases, the long-term component of the total variability may be dominant, since BEDD, 

CNI, as well as the FRA productivity, have significant trends (Table A 5). RCM presents a statistically significant 

outcome also for TnRest, which does not show trend over the period 2000-2018. In this case, the interannual variability 

might be more relevant to explain productivity. The statistically significant coefficients are all positive indicating a 300 

positive effect on productivity of BEDD, CNI and TnRest. 

In a previous study, conducted at regional scale using ISTAT productivity data and E-OBS (v26), Massano et al. 

(2023) did not find any statistically significant correlations for LOM neither with temperature-based nor precipitation-

based indices. This indicates that working at a local scale is crucial to improve the portion of productivity variance 

explained by the bioclimatic indices, while the use of CPM for FRA does not provide any advantage compared to the 305 

RCM. Productivity data show a significant positive trend in FRA (Table A 6) 

 

Figure 4: Spearman correlations coefficients between bioclimatic indices and wine grape productivity in FRA. Full coloured 

circles indicate significant correlations (p<=0.05). 

In MON, the correlations between productivity and bioclimatic indices are similar across all the datasets for BEDD, 310 

HI, WI and TmVeg but show greater variation for all other temperature-based and the precipitation-based indices 

(Figure 5). Significant results are found for TnVeg, only using CPM, and for TxVeg in all datasets. We highlight that 

TxVeg displays a negative correlation, indicating that extreme temperatures during the growing period have a negative 

impact on production. This aligns with wine makers expectations and is partially supported by results from FRA 

(Figure 4), despite not being statistically significant. Both TnVeg and TxVeg indices show a significant positive trend 315 
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Table 2: Spearman correlation coefficient the root mean square error (RMSE) of the indices time series and the percentage 285 
differences of RMSE with the mean of the reference (SPHERA and E-OBS) (RMSE%) for the cumulative variables. Bold 

font and asterisk (*) indicate a statistically significant result (p>=0.05) 

FRA 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index ρ RMSE RMSE% ρ RMSE  RMSE% ρ RMSE  RMSE% ρ RMSE RMSE% Index 

BEDD 
(GDD) 

0.97* 26.62 1.8 0.96* 19.39 1.3 0.85* 37.29 2.5 0.91* 45.78 3 
BEDD 
(GDD) 

HI 
(GDD) 

0.98* 305.88 13.7 0.96* 308.59 13.8 0.88* 128.56 5.2 0.87* 117.36 4.7 
HI 

(GDD) 

WI 
(GDD) 

0.99* 264.91 14 0.98* 247.63 13.1 0.85* 209.55 10.7 0.85* 191.23 9.7 
WI 

(GDD) 

TmVeg 
(°C) 

0.99* 1.24 - 0.98* 1.14 - 0.85* 0.98 - 0.84* 0.87 - 
TmVeg 

(°C) 

TnVeg 
(°C) 

0.63* 1.4 - 0.95* 2.59 - 0.65* 1 - 0.72* 1.53 - 
TnVeg 

(°C) 

TxVeg 
(°C) 

0.81* 5.11 - 0.48* 4.42 - 0.52* 3.56 - 0.64* 2.77 - 
TxVeg 

(°C) 

CNI (°C) 0.95* 0.81 - 0.87* 1.24 - 0.85* 1.2 - 0.85* 0.91 - CNI (°C) 

TnRest 0.81* 0.76 - 0.85* 1.99 - 0.75* 2.14 - 0.8* 1.17 - TnRest 

GSP 
(mm) 

0.64* 295.39 37.6 0.74* 410.3 52.3 0.5* 204.67 59.9 0.55* 103.91 30.4 
GSP 

(mm) 

SprR 
(mm) 

0.91* 43.28 18.6 0.77* 65.38 28 0.68* 111.33 79.2 0.84* 57.54 40.9 
SprR 
(mm) 

MON 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index ρ RMSE  RMSE% ρ 
RMSE 
(°C) 

RMSE% ρ RMSE RMSE% ρ RMSE  RMSE% Index 

BEDD 
(GDD) 

0.92* 55.33 4 0.91* 51.04 3.7 0.35 96.32 6.4 0.43 96.27 6.4 
BEDD 
(GDD) 

HI 
(GDD) 

0.86* 232.29 9.9 0.94* 233.54 10 0.82* 151.35 6.3 0.72* 158.76 6.6 
HI 

(GDD) 

WI 
(GDD) 

0.93* 284.54 16.1 0.93* 284.39 16 0.45* 217.68 11.2 0.31 224.69 11.6 
WI 

(GDD) 

TmVeg 
(°C) 

0.93* 1.34 - 0.92* 1.34 - 0.42 1.02 - 0.31 1.05 - 
TmVeg 

(°C) 

TnVeg 
(°C) 

0.69* 0.94 - 0.77* 1.76 - 0.67* 1.36 - 0.62* 1.58 - 
TnVeg 

(°C) 

TxVeg 
(°C) 

0.75* 2.75 - 0.83* 2.52 - 0.86* 2.02 - 0.82* 1.84 - 
TxVeg 

(°C) 

CNI (°C) 0.97* 0.84 - 0.95* 0.58 - 0.49* 1.9 - 0.4 1.38 - CNI (°C) 

TnRest 0.9* 1.43 - 0.86* 1.09 - 0.8* 1.94 - 0.79* 1.58 - TnRest 

GSP 
(mm) 

0.48* 128.26 39.1 0.49* 106.85 32.6 0.71* 136.38 48.3 0.71* 45.89 16.2 
GSP 

(mm) 

SprR 
(mm) 

0.84* 60.96 49.9 0.82* 40.48 33.1 0.75* 68.15 60.7 0.81* 34.61 30.8 
SprR 
(mm) 

 

3.3 Bioclimatic indices control on wine grape productivity 

3.3.1 Single regression analysis  290 

A Spearman correlation analysis is performed to investigate the relation between the different bioclimatic indices and 

wine grape productivity and consequently determine the amount of total productivity variability (interannual and long-

term) explained by these indices.  
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(Table A 7), which suggests productivity being more sensitive to the long-term component of variability, at least for 

CPM. Productivity data do not show any trend in MON (Table A 8). 

Only the CPM simulation shows significant correlation for the precipitation-based index GSP. This could be linked 

to the more realistic representation of the precipitation field (Prein et al., 2015), although positive correlations with 

GSP are not expected, as an excessively wet season is usually detrimental to production. Thus, it is possible that other 320 

factors influence this correlation, such as specific viticultural practices or vintage management (Priori et al., 2019). 

For example, harvesting immediately after rainfall may result in the collection of larger grapes, thus increasing the 

productivity. Additionally, specific trimming techniques can improve ventilation between the branches, reducing the 

risk of mould and fungus, and thus limiting the negative impact of precipitation on the harvest (Evers et al., 2010).  

The MON case shows improvements compared to the analysis done with ISTAT data by Massano et al. (2023). In 325 

their analysis, TOS did not show any correlation between wine grape productivity and any bioclimatic indices, despite 

considering a longer time series. Being FRA and MON productivity data from the same population as the ISTAT 

productivity data (Table A 1 and Figure A 1), these results confirm that the use of the local scale and including a larger 

variety of bioclimatic indices can enhance the portion of productivity variability explained by the bioclimatic indices 

considered. 330 

 

Figure 5: Spearman correlations between bioclimatic indices and wine grape productivity in MON. Full coloured circles 

indicate significant correlations (p<=0.05). 
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3.3.2 Multi-regression analysis 

A multi regression (MR) analysis is carried out and compared with the single regression (SR) approach to see if 335 

considering a linear combination of bioclimatic indices increases the proportion of productivity variability explained 

by the indices. 

Table 3 shows the results of the MR model, highlighting the selected bioclimatic indices and the variance explained 

in comparison with the SR method, for each case in both FRA and MON. The authors highlight that, even when the 

MR selects just one index, this can differ from the single regression due to the correlation method chosen. The MR 340 

confirms that the temperature-based bioclimatic indices are more relevant than precipitation-based ones in explaining 

productivity variability, especially in FRA, where only for RCM the GSP is selected as a predictor. In MON, 

precipitation-based indices are selected as predictors in the MR model when using the CPM simulation and SPHERA 

reanalysis, confirming the relative higher importance of precipitation on productivity in this area compared to FRA. 

Thus, for MON, the improved representation of the precipitation field at convection-permitting scale could be a 345 

relevant factor, since in the other cases precipitation-based indices are excluded by the MR.  

 

Table 3: Donuts chart indicating, for E-OBS, SPHERA, CPM and RCM, the best-performing index for the single regression 

(SR) and the indices included in the multi-regression model (MR), as well as the percentage of variance explained by each 

model (centre of the donut), in FRA and MON. Orange (blue) colour indicates temperature-based (precipitation-based) 350 
indices. The MR Adjusted R2 is expressed in the MR Adj R2 column. 

FRA MON 

Data SR MR 
MR 

AdjR2 
Data SR MR 

MR 

AdjR2 

E-OBS 

 

0.31 E-OBS 

 

0.28 

SPHER

A 

 

0.43 SPHERA 

 

0.31 

CPM 

 

0.42 CPM 

 

0.34 
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RCM 

 

0.57 RCM 

 

0.25 

 

The overview on the performance of the single-regression method (SR) and the multi-regression method (MR) is 

presented in Figure 6, showing that using a linear combination of bioclimatic indices increases the proportion of 

explained total productivity variability, especially for FRA. 355 

Overall, the bioclimatic indices explain a higher proportion of productivity variance in FRA compared to MON (Figure 

6a and Table A 9), in line with previous findings at regional level for LOM and TOS  (Massano et al., 2023). The 

highest proportion of explained variance in productivity is obtained in FRA with the MR approach and RCM data 

(64%), followed by SPHERA (56%) and CPM (48%). The variance explained in MON is lower, with a maximum of 

45% obtained for CPM and the MR approach, very close to SPHERA with MR (42%) and to E-OBS with SR (44%). 360 

The maximum variance in productivity explained by the SR is compared with the MR variance (Figure 6b), 

demonstrating that the MR better represents productivity variability in FRA in all cases except E-OBS, which shows 

a slight decrease in performance (-7%). Meanwhile, SPHERA gains 20%, CPM 14% and RCM 29% when MR is 

compared to SR. In MON, MR provides a better explanation for productivity variance in SPHERA reanalysis and 

CPM simulation, accounting for an increase of 11% and 21% respectively. However, for the E-OBS dataset and RCM 365 

simulation, MR performance decreases slightly (-12% and -3% respectively).  

 

a)

 

b)

 

Figure 6: a) The maximum fraction of the wine grape productivity variance (%) explained by SR and MR in each 

consortium, colours indicate the type of climatic data used, squared (triangular) shape indicates multi regressive (single 

regressive) approach. b) Variance differences in percentage between MR and SR for FRA and MON. 370 

4 Discussion and conclusion 

The study assesses the potential of a CPM to investigate the impact of climate variability on wine grape productivity 

at a local scale, using bioclimatic indices for the period 2000-2018. The CPM simulation is compared with RCM 
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simulation, SPHERA reanalysis, and E-OBS observations. The study uses wine grape productivity data from two 

Italian wine consortia, namely 'Consorzio per la tutela del Franciacorta' (FRA) and 'Consorzio Del Vino Nobile di 375 

Montepulciano' (MON). Single and multiple regression approaches are used to account for the possible interplay of 

bioclimatic indices in explaining wine grape productivity variability.  

Overall, the single regression exhibits high correlation coefficients, but statistically significant results are only found 

in a small number of cases at the 95% confidence level. The multi-regression method consistently enhances the 

productivity variability explained by the bioclimatic indices and delivers predictors with potential for usability. 380 

In FRA, the correlation coefficients are exclusively positive, but statistically significant only for temperature-based 

indices such as BEDD, CNI, and TnRest. There is a high degree of agreement between CPM and SPHERA reanalysis, 

but E-OBS and RCM presents the highest correlation. Correlations with precipitation-based indices in FRA are not 

significant and tend to show negative relationships with productivity. These findings suggest that temperature is the 

main factor affecting production, while precipitation has a negative impact on productivity, potentially resulting in 385 

losses due to fungal diseases in the region. 

The MON results indicate that only CPM provides statistically significant results for a precipitation-based index 

(GSP), which is positively correlated with productivity. Also, SPHERA, RCM and E-OBS in this region show positive 

correlations between precipitation-based indices and productivity, even if they are not significant. This differs from 

the findings for FRA, where the correlations are negative, even if not significant. However, it is worth noting that 390 

there are many differences in the geographical features and types of wine produced in FRA and MON. FRA is in the 

humid subtropical climatic zone, while MON is situated in the hot summer Mediterranean zone. Other factors, such 

as vintage management techniques and cultivar selection, can also influence productivity variability in addition to 

climate, but investigation of these factors is beyond the scope of this paper. Meanwhile, the productivity for both FRA 

and MON exhibits a negative correlation with TxVeg with all the climatic data considered, but it is only significant 395 

for MON. This suggests that extreme maximum temperatures during the vegetative season (1st April - 30th October) 

may have harmful effects.  

These results, which are obtained at a local scale using data from consortia, complement the previous study conducted 

at regional scale by Massano et al. (2023). The climate models appear to be a useful tool to explain productivity 

variance using a MR approach, improving the results compared to the E-OBS. However, the use of the CPM does not 400 

show a clear added value compared to the RCM since it performs better in MON, but not in FRA. This could be link 

to the fact that temperature is generally the main driver of wine grape production, and the added value of the CPM 

may be more evident when precipitation is a dominant factor. 

However, the analysis presented here pave the path to the use of climate models to investigate the impact of climate 

change on wine production in the future. In this context, CPMs can provide new climate information, such as hail risk, 405 

which is a convections-related phenomenon that impact grape productivity. Moreover, this work shows an application 

of the bioclimatic indices to wine grape productivity that is rarely used. 
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Appendix A 

 685 

Figure A 1: Boxplot of the regional productivity (cyan) and consortia productivity (green). The series of LOM and TOS 

come from ISTAT database and cover the period 1980-2019, whit a six-year gap between 2000-2005, the period available 

for FRA is 1997-2019 (calculated by aggregating the Franciacorta DOCG and Curtefranca DOC denominations) and for 

MON is 1989-2019 (calculated by aggregating the Vino Nobile and Rosso di Montepulciano denominations), with no gap in 

the series. 690 

Table A 1: results of Welch's t test (t.stat), the reference value for t.stat (t.tab), the degrees of freedom (DoF) for the t test 

based on the number of observations computed according to the Welch’s equation for effective degrees of freedom (Welch, 

1947) and temporal correlation between regional ad consortia productivity data. The * symbol indicates statistically 

significant results (p<=0.05). 

Consortium t.stat t.tab DoF Cor.Coef. 

FRA 1.17 2.01 47.94 0.62* 

MON 0.1 2 63.99 0.55* 

 695 
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Figure A 2: Time series of mean (TM), maximum Temperature (TX), minimum (TN) temperature and precipitation (P) 

over FRA area for the period 2000-2018. All the time series are based on data remapped on E-OBS grid (~ 11 km).  
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Figure A 3: Time series of mean (TM), maximum Temperature (TX), minimum (TN) temperature and precipitation (P) 700 
over MON area for the period 2000-2018. All the time series are based on data remapped on E-OBS grid (~ 11 km).  

Table A 2: Spearman correlation coefficient (ρ) , the root mean squared error (RMSE) between SPHERA (E-OBS) and 

CPM, as well as  SPHERA (E-OBS) and RCM time series and the percentage differences of RMSE with the mean of the 

reference (SPHERA and E-OBS) (RMSE%).  in the FRA and MON area. 

FRA 

 TM TX TN P 

 ρ RMSE (°C) ρ RMSE (°C) ρ RMSE (°C) ρ RMSE (mm) RMSE% 

SPHERA CPM  0.95* 0.78 0.94* 1.54 0.96* 0.39 0.84* 233.52 18.2 

SPHERA vs RCM 0.95* 0.38 0.96* 1.73 0.91* 1.37 0.73* 415.05 32.4 

E-OBS vs CPM 0.76* 0.64 0.78* 0.6 0.55* 0.78 0.76* 435.99 62.4 

E-OBS vs RCM 0.85* 0.37 0.82* 0.43 0.58* 0.61 0.77* 266.65 38.2 

MON 

 TM TX TN P 

 ρ RSME (°C) ρ RSME (°C) ρ RSME (°C) ρ RSME (mm) RMSE% 

SPHERA CPM  0.79* 1.06 0.81* 1.15 0.78* 0.58 0.78* 196.26 27.9 

SPHERA vs RCM 0.86* 0.91 0.92* 1.66 0.77* 0.77 0.78* 133.12 18.9 

E-OBS vs CPM 0.16 0.79 0.65* 0.85 -0.08 1.39 0.86* 177.98 26.2 

E-OBS vs RCM 0.06 0.83 0.52* 0.57 0.04 0.94 0.8* 128.03 18.8 

 705 
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Table A 3: Welch’s t-test between SPHERA (E-OBS) and CPM, as well as the SPHERA (E-OBS) and RCM time series in 

the FRA and MON.  For each variable (TM, TX, TN and P) the test statistics (t.stat), the t tabulated or critic (t.tab) for a 

95% confidence interval and the degree of freedom (Dof) computed using Welch’s formula are reported. Bold font and an 

asterisk (*) indicate the p-value <= 0.05, i.e. the rejection of the null hypothesis (h0) and a statistically significant difference 

between the mean value of the series. 710 

FRA 

 TM TX TN P 

 t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof 

SPHERA vs 

CPM  

4.16* 2.03 35.2 6.7* 2.03 34.25 -2.31* 2.03 35.96 -2.07* 2.03 35.85 

SPHERA vs 

RCM 

1.8 2.03 34.77 7.77* 2.03 34.83 -8.26* 2.03 35.59 -4.48* 2.03 35.47 

E-OBS vs CPM 2.98* 2.03 33.1 -1.54 2.03 35.76 3.84* 2.03 36 4.93* 2.04 29.22 

E-OBS vs RCM 0.5 2.04 32.45 -0.75 2.03 35.95 -2.24* 2.03 35.83 2.91* 2.04 32.58 

MON 

 TM TX TN P 

 t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof 

SPHERA vs 

CPM  

6.45* 2.03 35.57 5.24* 2.03 35.97 3.38* 2.04 32.37 2.33* 2.03 35.69 

SPHERA vs 

RCM 

5.72* 2.03 35.03 8.15* 2.03 35.83 -4.8* 2.04 32.12 1.3 2.03 35.91 

E-OBS vs CPM -0.24 2.04 30.12 -3.29* 2.03 35.99 4.89* 2.06 24.89 2.37* 2.03 35.57 

E-OBS vs RCM -0.95 2.04 29.09 -0.81 2.03 35.76 -0.87 2.06 24.71 1.34 2.03 35.96 

Table A 4: Welch’s t-test between SPHERA (E-OBS) and CPM, as well as the SPHERA (E-OBS) and RCM time series in 

the FRA and MON.  For each bioclimatic index the test statistics (t.stat), the t tabulated or critic (t.tab) for a 95% confidence 

interval and the degree of freedom (Dof) computed using Welch’s formula are reported. Bold font and an asterisk (*) 

indicate a p-value  <= 0.05, i.e. the rejection of the null hypothesis (h0) and a statistically significant difference between the 

mean value of the series. 715 

FRA 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof Index 

BEDD 
(GDD) -0.92 2.03 35.97 -0.17 2.03 35.97 0.67 2.03 35.36 1.47 2.03 35.35 

BEDD 
(GDD) 

HI (GDD) 
-

4.50* 2.04 32.50 -4.71* 2.03 33.34 -0.88 2.04 32.14 -0.96 2.03 33.01 HI (GDD) 

WI (GDD) 
-

4.48* 2.04 32.68 -4.13* 2.04 32.65 -3.25* 2.04 30.29 -2.89* 2.04 30.26 WI (GDD) 

TmVeg 
(°C) 

-

4.59* 2.04 32.60 -4.17* 2.04 32.59 -3.28* 2.04 30.54 -2.85* 2.04 30.53 

TmVeg 
(°C) 

TnVeg (°C) 2.86* 2.03 32.92 5.35* 2.03 35.87 -0.16 2.04 30.41 2.42* 2.03 34.63 TnVeg (°C) 

TxVeg (°C) 
-

8.32* 2.03 32.82 -8.62* 2.03 35.95 -5.47* 2.04 30.10 -5.30* 2.03 34.76 TxVeg (°C) 

CNI (°C) 0.99 2.03 33.37 2.29* 2.03 35.16 -1.22 2.03 33.70 -0.11 2.03 35.37 CNI (°C) 

TnRest -0.23 2.03 35.51 2.69* 2.03 35.40 -2.53* 2.03 35.77 0.15 2.03 35.84 TnRest 

GSP (mm) 5.55* 2.03 35.93 8.76* 2.03 33.94 -4.23* 2.04 32.17 -1.48 2.03 35.20 GSP (mm) 

SprR 

(mm) -0.03 2.03 36.00 1.92 2.03 35.18 -3.80* 2.04 31.84 -1.86 2.03 34.38 

SprR 

(mm) 

MON 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof Index 

BEDD - 2.03 35.88 -2.13* 2.03 35.84 1.91 2.03 34.16 2.04* 2.03 34.04 BEDD 
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(GDD) 2.25* (GDD) 

HI (GDD) 
-

3.31* 2.03 34.11 -3.71* 2.03 35.41 -1.37 2.03 33.35 -1.65 2.03 34.90 HI (GDD) 

WI (GDD) 
-

5.21* 2.03 34.38 -5.66* 2.03 35.53 -2.14* 2.03 36.00 -2.37* 2.03 35.56 WI (GDD) 

TmVeg 
(°C) 

-

5.38* 2.03 34.59 -5.79* 2.03 35.61 -2.06* 2.03 35.96 -2.24* 2.03 35.38 

TmVeg 
(°C) 

TnVeg (°C) -0.54 2.03 35.91 2.90* 2.03 35.78 -1.35 2.03 33.90 1.70 2.03 33.44 TnVeg (°C) 

TxVeg (°C) 
-

5.43* 2.03 35.98 -5.36* 2.03 35.06 -3.74* 2.03 35.86 -3.57* 2.03 34.60 TxVeg (°C) 

CNI (°C) -1.61 2.03 33.38 0.98 2.03 34.58 -3.31* 2.03 34.96 -0.92 2.03 35.70 CNI (°C) 

TnRest 
-

2.27* 2.03 35.17 -0.82 2.03 34.45 -2.35* 2.03 33.56 -1.01 2.04 32.57 TnRest 

GSP (mm) -1.05 2.04 31.29 2.46* 2.03 35.02 -3.06* 2.05 26.93 -0.04 2.03 35.74 GSP (mm) 

SprR 

(mm) 
-

2.44* 2.05 27.64 -0.44 2.04 31.33 -2.75* 2.04 32.09 -0.95 2.03 35.18 

SprR 

(mm) 
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Table A 5: Sen's slope FRA, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

 FRA 
TM 

(°C/yr) 

TX 

(°C/yr) 

TN 

(°C/yr) 

P 

(mm/yr) 

BEDD 

(GDD/yr) 

HI 

(GDD/yr) 

WI 

(GDD/yr) 

TmVeg 

(°C/yr) 

TnVeg 

(°C/yr) 

TxVeg 

(°C/yr) 

CNI 

(°C/yr) 

TnRest 

(°C/yr) 

GSP 

(mm/yr) 

SprR 

(mm/yr) 

E-OBS 0.05* 0.05 0.06* -5.91 4.59* 14.96* 11.67 0.06* 0 0.1 0.09 0.03 -4.77 -1.33 

SPHERA 0.04 0.03 0.04* 12.89 4.5 9.25 6.65 0.04 0.02 0.05 0.1 0.02 13.32* 4.57* 

CPM 0.04 0.03 0.04 6.54 3.35 13.34 12.61 0.06 0.01 0.12 0.13* 0.05 -1.31 0.7 

RCM 0.05* 0.04 0.04* -2.14 4.19 11.51 11.94 0.06 0.05* 0.12* 0.12 0.07 -2.41 -0.15 

Table A 6: Sen's slope productivity FRA bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

FRA 

Productivity 

(q/ha)/yr 

slope 1.28* 
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Table A 7: Sen's slope MON, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 720 

MON TM 

(°C/yr) 

TX 

(°C/yr) 

TN 

(°C/yr) 

P 

(mm/yr) 

BEDD 

(GDD/yr) 

HI 

(GDD/yr) 

WI 

(GDD/yr) 

TmVeg 

(°C/yr) 

TnVeg 

(°C/yr) 

TxVeg 

(°C/yr) 

CNI 

(°C/yr) 

TnRest 

(°C/yr) 

GSP 

(mm/yr) 

SprR 

(mm/yr) 

E-OBS -0.07* 0.04 -0.11* 8.64 -7.89* 1.23 -17.42* -0.08* -0.09 0.07 -0.07 0.03 4.38 0.07 

SPHERA 0.03 0.01 0.03* 19.47* 2.94 5.05 7.22 0.03 0.1* -0.08* 0.12* 0 10.36* 0.99 

CPM 0.03 0.02 0.03* 5.28 2.42 6.84 3.68 0.02 0.05* 0.05* 0.15 0 0.74 1 

RCM 0.04 0.03 0.03* 6.28 1.2 10.5 9.31 0.04 0.06* 0.01 0.11* 0.06 -0.08 0.34 

 

Table A 8: Sen's slope productivity MON, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

MON 

Productivity 

(q/ha)/yr 

slope 0.43 
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Table A 9: ranking of the maximum variance (%) explained for each dataset for each consortium, with the indication of type of 

method used (SR: single regression, MR multi-regression.) 725 

 

FRA MON 

Model var.value % type Model var.value % type 

RCM 64 % MR CPM 45 % MR 

SPHERA 56 % MR E-OBS 44 % SR 

CPM 48 % MR SPHERA 42 % MR 

E-OBS 42 % SR CPM 34 % SR 

SPHERA 36 % SR RCM 32 % SR 

E-OBS 35 % MR E-OBS 32 % MR 

RCM 35 % SR RCM 29 % MR 

CPM 34 % SR SPHERA 21 % SR 
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APPENDIX C. THE USE ECOCLIMATIC INDICES TO 
INVESTIGATE CLIMATE IMPACT ON WINE GRAPE 
YIELD AT LOCAL SCALE 

Supplementary data 
 

 

Figure A 4: MON.VN.R yield time series, the vertical dashed line corresponds to the year 1997. 

Table A 13: results of the Welch’s test to compare the mean values. 

t.statistic p.value DoF 

-5.17 0.00* 13.10 
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Figure A 5:boxplot of the MON.VN.R time series 1989-1996 and MON.VN.R time series 1997-2019 
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Valuation of Climate Services for Viticulturists: Tackling fungal diseases 
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A B S T R A C T   

Viticulturists developing adaptation strategies to mitigate the impact of climate change, which affects a grape-
vine’s physiology and wine typicity, can benefit from climate services. Climate services translate physically based 
variables, such as temperature and precipitation, into actionable, decision relevant bioclimatic indicators, such 
as Spring Rain, Heat Stress Days, and Warm Spell Duration. These bioclimatic indicators enable the mitigation of 
fungal diseases, specifically downy and powdery mildew, as well as sunburn. Accurate seasonal forecasts of these 
bioclimatic indicators can help farmers with viticulture, labor, and stock management, as well as improve the 
yield and value of wine-quality grapes. Seasonal forecasts of these indicators are available on the MED-GOLD 
project’s dashboard. This study determines an annual service fee to access these forecasts on the dashboard. 
The annual fee accounts for the seasonal forecast accuracy over part of the Douro wine region of Portugal, as well 
as the potential savings and losses of micro (⩽1 ha) holding grape growers. The revenue generated from this 
climate service fee exceeds the cost of dashboard maintenance by nearly 10 times, even with a fee which is less 
than half of the potential savings of the micro holding farmer.   

1. Practical Implications 

Seasonal forecasts and climate projections have the potential to help 
farmers anticipate upcoming needs and devise plans for a more resilient, 
sustainable, and efficient future (Buontempo et al., 2020; Born et al., 
2021; Wiréhn, 2024; Vaughan et al., 2019). Traditionally, these fore-
casts and projections included only essential climate variables, such as 
temperature and precipitation. The forecasts and projections did not 
include relevant bioclimatic variables, such as Spring Rain, Heat Stress 
Days, and Warm Spell Duration, which are needed to make agricultural 
decisions. This problem was compounded by the fact seasonal forecasts 
and climate projections are not easily accessible - both in terms of un-
derstanding and use for farmers. 

To tackle these problems, the European Union funded the MED- 
GOLD project ( https://www.med-gold.eu/) through its Horizon 2020 
research and innovation programme. The MED-GOLD project ran from 
December 2017 until May 2022. As part of the MED-GOLD project, a 

simple-to-understand and easy-to-use dashboard (https://dashboard. 
med-gold.eu/) was created. The MED-GOLD Dashboard covers three 
time periods: the historical climate (1979–2020), seasonal climate 
forecasts (1993–2021), and long-term climate projections (2031–2060; 
2071–2100) (Dell’Aquila et al., 2023). The MED-GOLD Dashboard 
provides essential climate variables, as well as bioclimatic indicators, for 
three key agricultural sectors of the Mediterranean, namely grapes, ol-
ives, and durum wheat. For each sector, an industrial partner was found 
to co-design, co-develop, test, and assess the added value of the MED- 
GOLD proof-of-concept agricultural climate service. 

In the grape sector, the industrial partner was SOGRAPE Vinhos 
(Dell’Aquila et al., 2023), the largest wine company of Portugal. They 
manage over 1,600 ha of vineyards and produce wines across 5 countries 
and 3 continents. Fungal diseases and sunburn cause considerable losses 
in grape yield (20–30 %) and value (20 %) in the single harvest each 
year (Graça, 2021). Through the co-development of process with SOG-
RAPE Vinhos (Chou et al., 2023; First feedback report from users on 
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wine pilot service development, 2023; Dell’Aquila et al., 2023), seasonal 
forecasts of Spring Rain, Heat Stress Days, and Warm Spell Duration, 
with a minimum accuracy of 70 % compared to observations, were 
identified as being helpful for explaining incidences of fungal diseases 
and sunburn, while improving viticulture, labor and stock management 
for grape growers in the Douro Valley (Northern Portugal). 

In this work, we have determined an appropriate annual fee to access 
the seasonal forecast of these three bioclimatic indicators on the MED- 
GOLD dashboard. To determine the fee, we first calculated the sea-
sonal forecast performance of these three indicators over the Douro 
Valley wine region. The seasonal forecast performance accounts for the 
hit-rate, false-alarm rate, and accuracy of the European Centre for Me-
dium Range Weather Forecasts (ECMWF) seasonal forecasts version 5 
data (Stockdale et al., 2018; Johnson et al., 2019), known as SEAS5, 
compared to the ECMWF reanalysis version 5, known as ERA5, of his-
torical weather and climate data Hersbach et al. (2020); Bell et al. 
(2021). The second component of determining the annual fee, includes a 
cost-benefit analysis identifying the potential savings and losses of a 
micro holding grape grower. Micro holding grape growers make up the 
vast majority of grape growers in Douro Valley wine region, making 
their perspective essential when determining a climate service fee. 
Combining the results of both analyses, a range of ”access fees” was 
proposed according to the accuracy of the seasonal forecast. 

The results showed the SEAS5 seasonal forecasts of the three 
bioclimatic indicators starting in March to be 54–60 % accurate, 
compared to the ERA5 reanalysis, for hotter- and/or wetter-than-normal 
conditions over the Douro region. These forecast accuracies are statis-
tically better than assuming the upcoming season will be ”normal”, 
although lower than preferred. Nonetheless, this climate service adds 
value to the traditional agri-food system. 

If the seasonal forecast accuracy is 100 %, incorporating it into the 
decision making process could save farmers more than 10 % of annual 
harvest earnings in an average year and more than 15 % in a hotter- and/ 
or wetter-than-normal year. Potential losses due to false alarms, how-
ever, must be accounted for. 

We propose an annual climate service fee of €20/year to access the 
seasonal forecasts, over the Douro region, starting in March. This fee was 
determined by considering: (i) the financial loss due to fungal diseases 
and sunburn,; (ii) the maximum potential savings of a seasonal forecast 
in terms of labor and fungicide; and (iii) the 50 % accuracy of the sea-
sonal forecasts starting in March. 

In addition, we have shown that the potential revenue that could be 
generated from the MED-GOLD dashboard seasonal forecast alone, by 
charging the (minimal) access fee, is almost 10 times the annual main-
tenance cost of the dashboard. Thus, the revenue could cover adaptive 
and preventive maintenance activities to improve the MED-GOLD 
dashboard according to user feedback. 

Lastly, the approach developed in this work, to determine the MED- 
GOLD Dashboard access fee, showed how improvements to the seasonal 
forecast accuracy directly impact the value of the climate service. The 
approach we used to identify the value of the climate service tackling 
fungal disease and sunburn can be applied to other MED-GOLD sector 
products and climate services. For example, those related to the olive or 
wheat sectors or future climate projections. 

2. Introduction 

2.1. MED-GOLD project 

The MED-GOLD project was a proof-of-concept agricultural climate 
service which focused on three staples of the Mediterranean food sys-
tem: grapes, olives, and durum wheat. Scientific and industrial experts 
partnered together to demonstrate the added-value of co-designing and 
co-developing information-driven responses to climate changes. A 
comprehensive description of the co-development of the MED-GOLD 
pilot climate service for the grape/wine sector is described in 

Dell’Aquila et al. (2023). 
The agricultural climate service for the wine sector was co-developed 

with SOGRAPE Vinhos, the largest producing wine company in Portugal. 
SOGRAPE’s participation as a co-designer in this pilot climate service 
acts as a catalyst, accelerating the engagement within the wine sector. 
Having a single dedicated ”champion user” in the co-production of the 
climate service tool was particularly important in the Douro wine region 
(Fig. 1) due to the distribution of grape growers. From the Douro wine 
region’s holding size distribution, shown in Fig. 2, it can be seen that 
⩾60 % of grape growers have micro holdings (⩽1 ha). With only one 
grape harvest per year, the income generated by the harvest on a micro 
holding is merely supplementary income for the grape grower. Often 
times, these grape growers can not commit the time needed for the entire 
process of climate service co-production, which includes repeated in-
terviews, testing and iterating products/services, etc., in addition to 
their regular jobs. SOGRAPE has the knowledge, resources, and 
personnel to dedicate to the co-production process with its own full-time 
Research & Development team. They participate in research projects 
and disseminate results to grape-growers and the wider wine sector; 
including the ∼ 1,000 grape growers who sell their products to SOG-
RAPE (Graça, 2021) in the Douro wine region. 

2.2. Douro Wine Region 

The Douro wine region is a mountainous region in Northern Portugal 
(Fig. 3) with a very steep terrain. Tiered terraces have been etched along 
its steep slopes. The rocky, schistous soil of the Douro region is dry and 
poor in nutrients, but has excellent heat retaining properties. With ter-
races offering different variations in altitude, exposures to sun and wind, 
soil fertility, and atmospheric humidity, the Douro region is a host to a 
variety of grape types. The six principal red and white grape varieties 
include, Tinta Amarela, Tinta Barroca, Tinto Cão, Tinta Roriz, Touriga 
Nacional, Touriga Francesa, Gouveio, Arinto, Malvasia Fina, Rabigato, 
Viosinho, and Códega. 

2.3. Fungal Diseases and sunburn 

Some grape varieties, such as Touriga Francesa, which account for 
approximately 25 % of all grapevines in the Douro wine region (Vinhos e 
Aguardentes de Portugal, 2020), have tight grape bunches. This makes 
them more susceptible to fungal diseases, particularly when warm and 
moist conditions persist and air can not circulate in the grape bunches 
(Graça, 2021). 

Atmospheric humidity in the Douro wine region, in particular after 
rain in the spring, can drive risk of infection by Plasmopara viticola 
(downy mildew) (Fig. 4a) (Graça, 2021). When downy mildew emerges 
during critical phenological stages, such as at blossom or at fruit set, 
grapes are damaged, ultimately reducing yield. Downy mildew can be 
avoided by the procurement and application of protection products, 
such as copper-based formulations. Determining when protection 
products should be applied relies on daily monitoring of temperature, 
rainfall, and vegetation conditions. For example, the period after bud-
break, when daily average temperature exceeds 10∘C and shoots are at 
least 10 cm long, a rainfall event of 10 mm over 2 days prompts visual 
inspections for fungal disease development (Graça, 2021). Fungal 
development in susceptible areas has, historically, appeared one week 
after the rain event. After a visual verification of fungal development 
and protection products have been applied, atmospheric humidity 
conditions must be monitored as ensuing rainfall events may provoke 
secondary infections. Should this occur, protection products must be 
reapplied. Protection products may be applied multiple times 
throughout the growing season (Graça, 2021). Downy mildew protec-
tion products, however, have expiration dates over which they lose ac-
tivity. Their short shelf life means any quantity not used during the 
growing season should not be carried over. 

When high atmospheric humidity conditions are combined with 
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mild-warm temperatures, sheltered conditions can be created around 
the bunch zones, especially in high-vigor grapevines. These unaerated 
bunches may be infected by Erysiphe necator (powdery mildew) 
(Fig. 4b) (Graça, 2021). Should an infection of powdery mildew occur 
during the veraison stage of grape bunch development, the result is a 
loss of grapes quality. Powdery mildew can be avoided through manual 
trimming and leaf thinning by laborers, known as active canopy man-
agement. These exposed grape bunches, however, are susceptible to 
sunburn as a result of direct solar radiation exposure (Fig. 4c) when 
temperatures exceed 35∘C (Graça, 2021). This is particularly problem-
atic during heatwaves. In addition, when temperatures exceed 35∘C, the 

grapevine undergoes heat stress. The plant closes its stomata and 
photosynthesis no longer occurs. As the plant uses more water to cool its 
tissues, it can lead to a disruption in flowering or berry and leaf dehy-
dration, and sunburn. Both sunburn and powdery mildew lead to a 
decrease in crop quality and value, but active canopy management can 
prevent the risk of either occurring. 

With a single harvest per year, the yield and value of an entire pro-
duction of wine quality grapes can be significantly reduced, or even lost, 
due to weather phenomena and viticulture mismanagement. In the 
Douro region, SOGRAPE found downy mildew typically caused a yield 
loss of 30 %, whereas sunburn caused a yield loss of 20 %, and powdery 

Fig. 1. The Douro Wine Region in Northern Portugal. Image Credit: SOGRAPE (Graça, 2021).  

Fig. 2. Distribution of holdings according to Farm Size in the Douro wine region. Percentage of total distribution shown in square brackets. Data Source: Instituto 
dos Vinhos do Douro do Porto, I.P. (2020) (Caracterização et al., 2020). 
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mildew caused a value loss of 20 %. These values are the same for all 
holdings, regardless of size (Graça, 2021). 

2.4. Bioclimatic Indicators 

Through several workshops, interviews, and focus group discussions 
with different levels of management, directors, and executives covering 
SOGRAPE’s decision chain in productive and procurement operations 
the following bioclimatic indicators were identified as being useful for 
explaining the incidence of fungal diseases and sunburn in grape 
bunches Chou et al. (2023); First feedback report from users on wine 
pilot service development (2023); Terrado et al. (2023); Dell’Aquila 
et al. (2023). 

These bioclimatic indicators, for the Northern Hemisphere, are 
defined as:  

1. Spring total precipitation (SprR), the total accumulated rainfall from 
April 21st to June 21st. This indicator is associated with vigorous 
undervine growth which increases atmospheric humidity and re-
stricts airflow, contributing to fungal disease risk Dell’Aquila et al. 
(2023); AWRI (2023).  

2. Heat Stress Days (SU35), the total count of days which the daily 
maximum temperature exceeded 35∘C between 1st April and 31st 
October Chou et al. (2023). This indicator is associated with the 
number of days photosynthesis of the plant is limited. After veraison, 
it can affect the sugar, polyphenol, and aroma precursor concentra-
tions in berries, thereby affecting grape and wine quality Chou et al. 
(2023).  

3. Warm Spell Duration Index (WSDI), total count of days which the 
daily maximum temperature exceeded the 90th percentile for at least 
6 consecutive days between 1st April and 31st October Chou et al. 
(2023). This indicator is associated with dehydration, flowering 
disruption, and scalding of berries and leaves Chou et al. (2023). 

2.5. Climate Service 

The workshops, interviews, and discussions also helped determine 
that the mitigation of fungal diseases and sunburn in grape bunches 
impacts several operational areas including: viticulture, labor, and stock 
management Chou et al. (2023); First feedback report from users on 
wine pilot service development (2023); Terrado et al. (2023); Dell’A-
quila et al. (2023). These areas can benefit from a climate service that 
helps forecast fungal infection risk and sunburn. Seasonal forecasts of 

Fig. 3. Mountainous and rocky terrain of the Douro Wine Region. Photo Credit: SOGRAPE (Graça, 2021).  

Fig. 4. Examples of (a) Plasmopara viticola, (b) Erysiphe necator, and (c) sunburn. Photo Credit: SOGRAPE (Graça, 2023).  
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SprR, SU35, and WSDI, with a minimum accuracy of 70 % compared to 
observations, were presented in a format which was easy to interpret, 
understand, and use would suit this purpose Fontes et al. (2016); Chou 
et al. (2023); First feedback report from users on wine pilot service 
development (2023); Terrado et al. (2023); Dell’Aquila et al. (2023). 

An effective climate service providing forecasts with longer lead 
times allows viticulture management to improve the timing of vineyard 
operations such as pruning and canopy management, as well as planning 
fungal disease treatments. Similarly, labor management benefits from 
improved identification and anticipation of high-demand labor periods 
for the application of protective treatments and canopy management. 
Stock management benefits from a climate service that offers adequate 
anticipation of seasonal climate trends which allows for the early pro-
curement of downy mildew protection products at a lower cost. Addi-
tionally, chemical waste can be reduced when the correct amount of 
downy mildew protection products are purchased. 

A climate service that provides accurate seasonal forecasts allows for 
the timely procurement of fungicide product and hiring of labor to tackle 
downy and powdery mildew, as well as sunburn, can reduce losses in 
grape yield and value. For many viticulturists, a key question is ”How 
much is a climate service worth?” 

Previous work regarding the climatic service market or the valuation 
of climate service benefits for adaptation Vaughan et al. (2019), such as 
in Vogel et al. (2017) and Cortekar et al. (2020), or in improved water 
management Delpiazzo et al. (2023), have not addressed the issue of 
access fees. The approach developed in this work to determine an annual 
climate service access fee, in particular where the fee is linked to the 
performance of the forecast, is novel. 

2.6. Valuation of Climate Service 

This work determined an acceptable annual fee to access the seasonal 
forecasts of SprR, SU35, and WSDI on the MED-GOLD Dashboard 
(described in Section 3.1). An annual fee for seasonal forecast accuracies 
of 50 %, 70 %, and 90 % was calculated at the request of SOGRAPE 
(Graça, 2021). The overall forecast accuracy depends on the hit-rate, 
false-alarm rate, missed forecasts, and correct rejections (described in 
Section 4.1). The performance of the seasonal forecast is integral for 
determining the climate service’s ”value” because it is directly linked to 
the hiring of labor, product procurement expenditures, and potential 
savings for the grape growers. 

The existing market for the MED-GOLD Dashboard amongst viti-
culturists in the Douro wine region is driven by micro holding grape 
growers. Their profit/loss margins will govern the maximum cost of the 
climate service. Micro holding grape growers indirectly reflect pur-
chasing power and influence purchasing choices. The cost of the climate 
service must not exceed the potential loss by fungal infection or sunburn, 
nor significantly reduce profit margins of the grape grower. To deter-
mine a valuation of the MED-GOLD Dashboard, it is essential to un-
derstand the potential financial gains and losses of a micro holding grape 
grower due to fungal disease and sunburn. This will be presented in 
Section 4.2. In this work, the valuation of climate service was based on: 
(i) the performance of the seasonal forecasts of SprR, SU35, and WSDI on 
the MED-GOLD Dashboard (Martins et al., 2021; Dunn et al., 2020); (ii) 
the cost of inaction of fungal disease; and (iii) the potential savings due 
to actionable climate knowledge. The aim was to propose a reasonable 
fee for a climate service tackling fungal diseases and sunburn. 

2.7. Technical Considerations & Business Sustainability 

In addition, this work determined if the existing market in the Douro 
wine region, with the proposed fee, can sustain the minimum annual IT 
infrastructure cost of about €12,000, which was determined during the 
MED-GOLD project’s prototype development. 

The MED-GOLD Dashboard and the MED-GOLD ICT (Information 
and Communication Technologies) platforms it relies upon were 

designed around a Public Cloud-based infrastructure, namely Amazon 
Web Services (AWS). The main reason for this fundamental architectural 
choice resided in one of the defining features of Cloud computing: 
elasticity. While traditional ”on-premises” IT infrastructures usually 
require large capital expenses in order to acquire, configure, build, and 
maintain a physical data center, publicly available Cloud platforms 
allow users to dynamically create, manage, and destroy needed IT re-
sources in an elastic way, only generating operating costs when those 
resources (e.g.: storage, computing units) are actively used. This way, a 
Cloud-based application, such as the MED-GOLD Dashboard, can still be 
viable for small-scale scenarios, and, when designed according to best 
practices, can easily be scaled up as the need arises. For a more detailed 
description of the technical considerations about the deployment of the 
MED-GOLD ICT platform and the Dashboard application, please refer to 
Caboni et al. (2021). 

The expected cost of €12,000 included both the MED-GOLD Dash-
board web application’s infrastructure itself and the entire data pro-
cessing pipelines it relies upon: source data fetching from the European 
Union’s Earth Observation Programme Copernicus Climate Change 
Service (C3S) (https://cds.climate.copernicus.eu/) Climate Data Store 
(CDS), validation and normalization of scripts, indicators calculations, 
and storage. It is important to note that this cost should be considered as 
the bare minimum to sustain the recurring cost of the basic Cloud-based 
IT infrastructure and wouldn’t allow for any enterprise-level mainte-
nance or application-level improvements. 

3. Materials and Methods 

3.1. MED-GOLD Dashboard 

The MED-GOLD Dashboard is user-focused web-based application 
designed and created to visualise and disseminate relevant climate in-
formation for three Mediterranean agricultural sectors. For a compre-
hensive review of the MED-GOLD Dashboard for the grape and wine 
sector, please refer to Dell’Aquila et al. (2023). There is also a MED- 
GOLD dashboard user guide entitled ”Deliverable 3.5 A handy easy-to- 
use manual for stakeholders Wine practitioners of the climate service 
tool. PART II: the grape/ wine sector.” available at https://www.med- 
gold.eu/documents-deliverables/. 

The MED-GOLD dashboard presents climate information provided by 
the CDS Buontempo et al. (2020); Copernicus Climate Change Service 
(2021). The CDS provides access to numerous quality checked climate 
data sets including the ECMWF ERA5 reanalysis of historical weather 
and climate data Hersbach et al. (2020); Bell et al. (2021), which we 
used to verify the ECMWF SEAS5 seasonal forecasts of atmospheric and 
oceanic conditions (Stockdale et al., 2018; Johnson et al., 2019). SEAS5 
consists of a 51-member ensemble initialised every month on the first 
day of the month and integrated for 7 months (Johnson et al., 2019). 
SEAS5 has a spatial resolution of 0.25 degrees. On the MED-GOLD 
Dashboard, the SEAS5 was used to compute SprR, SU35 and WSDI 
starting at different months (March to June) Doblas-Reyes et al. (2013) 
Calí Quaglia et al. (2022) Giuntoli et al. (2022). For a comprehensive 
description of all CDS products used in the MED-GOLD Dashboard, 
please refer to the project “Deliverable 7.2 Data Management Plan” 
available at https://www.med-gold.eu/documents-deliverables/. 

The MED-GOLD dashboard presents the climate information for each 
of the three time periods (historical climate, seasonal forecasts, and 
long-term projections) in their own sections. In each of these sections, 
the climate information is classified into the following three categories: 
Climate variables (e.g. precipitation); Bioclimatic indicators (e.g. Spring 
Rain); and Wine Risk Indicators (e.g. Sanitary and Heat Risk). The 
dashboard is a visualization focused web-based application that also 
allows users to browse, view, and download climate data. Relevant 
parameters can be selected one-by-one according to preferred time 
range, geographic location, scenario type/forecast starting month, 
climate indicator, etc. The indicators are available in several different 
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formats and visualizations, allowing for easy, quick, and seamless inte-
gration into critical decision-making. Users can access and interact with 
relevant climate information without any programming knowledge or 
the need to manage large climate data files. The main functionalities of 
the dashboard were based on specific needs highlighted by SOGRAPE. 

The study considers only one component of the MED-GOLD dash-
board - namely, seasonal forecasts of three bioclimatic indicators. 

3.1.1. MED-GOLD Dashboard: Seasonal forecasts 
The seasonal forecasts of each bioclimatic index on the MED-GOLD 

Dashboard is presented in terciles. The terciles indicate: above normal, 
normal, or below normal, where ’normal’ is defined as the range be-
tween the 33rd and 66th percentile over the 1993–2020 period from the 
bioclimatic index derived from the ECWMF ERA5 reanalysis of global 
weather and climate Hersbach et al. (2020) Bell et al. (2021). ’Above- 
normal’ is defined as greater than the 66th percentile and ’Below- 
normal’ is defined as less than the 33rd percentile (Deliverable3.2, 2023; 
Deliverable3.3, 2021). The values which lie above the upper tercile or 
below the lower tercile are commonly considered as anomalies in 
climate science (ECMWF, 2021; Deliverable3.5, 2023). The presentation 
of the indicators as above/below normal is a result of the dashboard’s 
co-development process, taking into account user feedback, allowing for 
a more diverse range of users of climate information ranging from be-
ginners to advanced First feedback report from users on wine pilot ser-
vice development (2023); Dell’Aquila et al. (2023). 

In this study, we have only considered conditions under which grape 
growers would benefit from fungicide and sunburn prevention, namely 
hotter- and/or wetter-than-normal conditions, as recommended by 
SOGRAPE. As such, we analyzed and reported the performance of the 
three bioclimatic indicators when above-normal conditions were fore-
casted in SEAS5 compared to ERA5 reanalysis. This study should not be 
confused with a comprehensive evaluation of the bioclimatic indicator 
performance seasonal forecast, which would also investigate the causes 
of deteriorating performances. For an advanced analysis of the seasonal 
forecasts of the bioclimatic indicators for the wine sector please refer to 
Chou et al. (2023). 

3.2. Performance metrics of Bioclimatic Indicators 

The performance of SEAS5 seasonal forecasts of above-normal con-
ditions, from 1993–2020, for each of the three indicators (SprR, SU35 
and WSDI) was calculated for the region over the SOGRAPE company 
vineyards located in the Douro wine region (lon 7◦ 0’ 59” W, lat 41◦ 1’ 
20” N). The SEAS5 resolution of 0.25 degrees translates to approxi-
mately 21 km by 21 km over this grid box, which covers approximately 
441 km2. The bioclimatic indicators are homogeneous over the grid-box. 

The performance of each of the three indicators is based on the hit- 
rate, false-alarm-rate, and accuracy of the SEAS5 seasonal forecasts 
compared to the ERA5 reanalysis Mason et al. (2003). The definitions of 
hit-rate, false-alarm-rate, and accuracy used are as follows (Eqn. (1)– 
(3)): 

H = a/(a+ c) (1)  

F = b/(b+ d) (2)  

A = (a+ d)/(a+ b+ c+ d) (3)  

Where:  

• a denotes a Hit. It is the number of times an event was correctly 
forecasted and occurred.  

• b denotes a False-Alarm. It is the number of times an event was 
forecasted but did not occur.  

• c denotes a Miss. It is the number of times an event occurred but it 
was not forecasted.  

• d denotes a Correct-Rejection. It is the number of times an event was 
not forecasted and did not occur. 

The MED-GOLD dashboard provides seasonal forecasts of SprR, SU35 
and WSDI starting at different months (March to June) Doblas-Reyes 
et al. (2013) Calí Quaglia et al. (2022) Giuntoli et al. (2022). The earlier 
an accurate forecast can be made the better is for the climate service 
users. For each index, and for each starting month, the three perfor-
mance metrics (hit-rate, false-alarm-rate ans accuracy) are calculated. 
The performance of the bioclimatic indicators over the Douro valley 
gives a complete picture of the quality product the MED-GOLD project 
provides the grape growers and helps determine the value of the climate 
service. 

For grape growers using seasonal forecasts for planning purposes, 
both ’false alarms’ and ’missed alarms’ are problematic. In the case of a 
false alarm, the seasonal forecast recommends that grape growers pur-
chase product and hire labour to deal with a hotter- and/or wetter- than- 
normal summer, an investment that is not needed in the end. The grape 
growers’ money would be lost when a False-alarm occurs. In the case of 
a missed forecast of a hotter- and/or wetter-than-normal summer, no 
actionable climate knowledge is gained from the seasonal forecast. The 
grower does not lose additional money through pre-purchase of un-
necessary goods and services on the basis of the forecast suggestion. 
Their expenses, as well as losses in yield and value, in the season, would 
be the same as without a climate service. 

This work determined the value of the actionable climate knowledge 
that can be gained from seasonal forecasts by considering the amount of 
money that could be saved by using the climate service, as well as the 
impact of missed and false alarms. In other words, we conducted an 
ecosystem service to find the right value of the climate service. 

3.3. Ecosystem Services valuation approach 

Ecosystem Services (Burkhard et al., 2018) constitute a socio- 
ecological approach to analyze the relationship among ecosystems, 
economics, and social systems trying to measure and quantify the eco-
nomic impact due to ecosystem changes. According to the Common 
International Classification of Ecosystem Services (CICES v.5.1 (Haines- 
Young and Potschin-Young, 2018)) classification, in agricultural fields, 
ecosystem services related to fungal diseases are included in regulating 
services: to control, prevent, and reduce the number of fungal disease 
event. 

To find the correct value of a climate service for viticulturists tack-
ling fungal disease and sunburn in the Douro wine region, we took two 
ecosystem service approaches: ’Market Value’ and ’Standard Output’. 
The approaches are described below. The market value approach is 
included to provide farmers in the Douro region a relatable analysis, 
while the standard output approach allows for a generalization of this 
study to other farmers in the European market. 

3.3.1. Market Value 
The Market Value approach took into account the average yield, 

yield loss, and price of good quality grapes, over a six year period from 
2014 to 2019, from a >20 ha property in the Douro wine region (Graça, 
2021). These values were provided by SOGRAPE and assumed to be 
representative for the region. The value of €3,136/ha was set as the 
economic value of ecosystem services based on an average yield of 
3,200 kg/ha with an average price of €0.98/kg for a good quality yield of 
wine grapes (Graça, 2021). We used these values to estimate cost of 
inaction against fungal diseases and sunburn by vineyard area. 

3.3.2. Standard Output 
In addition to the market value approach, we also present a valuation 

based on the European Union’s standard output. The Standard Output 
(SO) of an agricultural crop is defined as the average monetary value of 
the agricultural output at farm-gate price, in €/ha (Glossary, 2023). The 
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European Standard Output values are released by EuroStat every few 
years, which represents the 5-year average of an agricultural product 
(crop or livestock)(Glossary, 2023). According to Eurostat SO 2013 
(EuroStat, 2021) the Standard Output of ”Vineyards - Quality Wine” is 
€2,610/ha for the Norte region of Portugal where the Douro wine region 
sits. This value was used in the following calculations of inaction. The 
standard output is used as a classification of agricultural holdings by 
type of farming and by economic size across Europe (Glossary, 2023). 
This value was determined by using the average prices from 2011 to 
2015 and applied to the 2016 Farm structure survey data (EuroStat, 
2021). The standard output includes sales, redeployment, self- 
consumption and changes in the stock of products, without the costs 
of transport and marketing, except for those products for which the price 
for packaging is also included. The standard output does not include 
direct payments, Value Added Tax (VAT) or taxes on products (European 
Commission Regulation 1242/2008, European Commission Regulation 
1166/2000). 

3.4. Farm Personas 

The valuation of a climate service which forecasts infections risk, 
allowing for better hiring practices and the deployment of preventative 
measures, was performed for 3 personas: the ’Reactive Farmer’, the 
’Prepared Farmer’, and the ’Pro-active Farmer’. The ’Reactive Farmer’ 
makes spontaneous decisions according to present conditions; and is 
most similar to the ’real world’ grape grower who must react in terms of 
purchasing fungicide and hiring labor as the situation unfolds. The 
Reactive Farmer is most susceptible to abrupt increases in costs. The 
’Prepared Farmer’ uses industry knowledge and experience to prepare 
for infections and procures some fungicide products ahead of time at a 
lower cost. This persona has the ability to absorb some loss if labor or 
products are not needed. Lastly, the ’Pro-active Farmer’ bases their 
decision to procure fungicide or hire labor entirely on the seasonal 
forecast. They assume the seasonal forecast is correct all the time (a.k.a. 
a 100 % accuracy). 

A cost-benefit evaluation was performed for each of these personas 
for differing seasonal forecast accuracies of the bioclimatic indicators. 
Tables 1. 

4. Results 

4.1. Performance of the bioclimatic indicators 

The performance of the three bioclimatic indicators from SEAS5 
seasonal forecasts, starting at different months, was compared to the 
ERA5 reanalysis over the SOGRAPE company vineyards. The hit-rate, 
false-alarm-rate, and accuracy of SprR, SU35, and WSDI are presented 
in Tables 2–4 respectively. The metrics in Tables 2–4 range from 0 to 100 
%. A forecast with a hit-rate lower than 33 % is equivalent to the 
climatological average range (i.e. within the ”normal” range) and as 
such does not provide actionable climate knowledge to the grape 
grower. The higher the hit-rate, the better. In regards to the false-alarm 
rate, a good forecast will have low values. For the accuracy metric, the 
higher the value, the better. 

The hit-rate of seasonal forecasts of SprR starting in March and April 
are only 25 %, however, as the season progressed the performance 
improved and the hit-rate of the June forecast rose to 63 %. The false- 

alarm rates also improved as the season progressed, going from a 
maximum of 33 % to 11 % in June. The overall accuracy of SprR fore-
casts for wetter-than-normal springs are all well above 33 % and is better 
than assuming the climatological mean. The accuracy is good in May 
and June, above 70 %, however, the forecast starting April is only 54 %. 

For SU35 the hit-rate for seasonal forecasts were better in March and 
June compared to April and May. The June forecast had the best hit-rate 
with 70 %. Comparably, May forecasts only had a hit-rate of 30 %. The 
false-alarm rate in both March and May were above 40 %, which is high. 
The overall forecast accuracies of SU35 for warmer-than-normal con-
ditions, for all starting months, were above 46 % and better than 
assuming the climatological mean. The best performance accuracy was 
in June with 68 %. 

The hit-rates of seasonal forecasts of WSDI, for all starting months, 
range from 42 % to 58 %. The false-alarm rate from March through May 
are quite high, with the April forecast reaching a peak of 50 %. Signif-
icant improvements are seen in June (14 %). The overall forecast ac-
curacies of WSDI for hotter-than-normal conditions, regardless of 
starting month are greater than 46 % for the Douro region and can be 
considered better than assuming the climatological mean. 

Of the three bioclimatic indicators, the most accurate was SprR. The 
accuracy of SU35 and WSDI, overall, were nearly identical. Interest-
ingly, the hit-rates of SU35 and WSDI were better than SprR, however, 
their false-alarm rates were worse. 

For all indicators, the accuracy of the seasonal forecasts for hotter- 
and/or wetter-than-normal conditions were most accurate when starting 
in June. The relatively poorer performance in April and May, compared 
to March and June could be related to seasonal predictability and to 
large-scale phenomena influencing the local scale meteorology in spring 
Broennimann (2007); Giuntoli et al. (2022); Calí Quaglia et al. (2022). 

It should be iterated that this study simply reports the accuracy of the 
seasonal forecast over the SOGRAPE vineyards for the purpose of 
determining the value of the climate service. This study is not a verifi-
cation analysis of the seasonal forecasts in general, nor have we inves-
tigated the causes of deteriorating performances of the bioclimatic 
indicators, as found in April. This has been done in the following works 
of Chou et al. (2023); Dell’Aquila et al. (2023); Stockdale et al. (2018); 
Johnson et al. (2019). 

Table 1 
Contingency table.    

Forecasted   

Yes No 

Observed Yes (a) Hit (c) Miss 
No (b) False (d) Reject  

Table 2 
Spring Rain (SprR) performance metrics for seasonal forecasts starting at 
different months. The hit-rate, false-alarm-rate, and accuracy are shown in 
percentages (%).   

Mar Apr May Jun 

Hit-Rate 25 25 38 63 
False-alarm Rate 24 33 11 11 
Accuracy 60 54 73 81  

Table 3 
Number of Heat Stress Days (SU35) performance metrics for seasonal forecasts 
starting at different months. Values are shown in percentages (%).   

Mar Apr May Jun 

Hit-Rate 50 40 30 70 
False-alarm Rate 44 31 44 33 
Accuracy 54 58 46 68  

Table 4 
Warm Spell Duration Index (WSDI) performance metrics for seasonal forecasts 
starting at different months. Values are shown in percentages (%).   

Mar Apr May Jun 

Hit-Rate 42 42 58 50 
False-alarm Rate 36 50 43 14 
Accuracy 54 46 58 69  
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4.2. Valuation of Climate Service 

As mentioned, the cost of the climate service must not exceed the 
potential loss by fungal infection or sunburn, nor significantly reduce 
profit margins of a micro holding grape grower. As such, we first 
determined the cost of inaction against fungal disease. Secondly, we 
determined the maximum potential savings the seasonal forecasts 
knowledge can provide. Thirdly, the total cost of the climate service was 
calculated, which accounts for forecast errors. Lastly, we calculate 
whether the proposed climate fee can sustain the MED-GOLD 
dashboard. 

4.2.1. Cost of inaction against Fungal Disease 
In Table 5 the average yield and income for different holding sizes, 

based on the market value approach, are presented alongside potential 
cost of inaction due to fungal disease and sunburn. Additionally, the 
yield loss, according to Eurostat methodology, in terms of standard 
output prices of good quality grapes was also calculated (Table 6). We 
only considered the value of quality grapes necessary for wine in this 
study and have not considered lower quality grapes. 

The potential losses presented for the 1 ha holdings range from 
€627–941 following the market value approach, and €522–783 
following the standard output approach. These potential losses are the 
upper bound of any climate service fee. 

4.2.2. Value of actionable knowledge for Fungal Disease and Sunburn 
The next step in the approach developed to determine the value of a 

climate service for fungal mitigation was to calculate the potential 
savings a seasonal forecast could provide in terms of early procurement 
of fungicide and labor. For this we considered the costs associated with 
an average year (Table 7) and a hotter- and/or wetter-than-normal year 
(Table 8). The values used in the following section for labor costs, the 
number of sprays of downy mildew protection product, amount of 
protection product needed, and costs of protection product, were based 
on those from a holding in the Douro region averaged over a six-year 
period (Graça, 2021). On average 9.4 kg/ha of downy product was 
used per spray, which cost €9/kg when procured 6 months ahead of 
time, or €16/kg when procured 2 weeks ahead of time (Graça, 2021). 
For each hectare of the holding, the Pro-Active Farmer could save an 
additional €110 in labor (Graça, 2021) for an accurate seasonal forecast. 

In the cost-benefit analysis presented in Tables 7 and 8, we assume 
the Reactive Farmer has to procure all downy mildew protection product 
2 weeks ahead of time at a higher cost. The Prepared Farmer has pur-
chased the quantity need for 2 sprays 6 months in advance at a lower 
price. They must make any additional purchases of protection product 
needed in the season at a higher price. The Pro-active Farmer assumes 
the seasonal forecast has a 100 % accuracy and purchases all protection 
product 6 months in advance. The savings relative to the Reactive 
Farmer is presented for both the Prepared and Pro-Active Farmer. 

The results in Table 7 show that a Pro-Active farmer can benefit from 
a climate service on an ’average’ year relative to both the Reactive and 
Prepared Farmers. For a seasonal forecast with an accuracy of 100 % the 
Pro-Active farmer could save €373.20, compared to the Reactive farmer, 
which is more than 10 % of the market value and standard output earned 
for quality wine grapes on 1 ha. The Pro-Active farmer saves >2.8 times 
the amount the Prepared farmer saves. Table 8 shows that the Pro-Active 

farmer aims to gain much more in wet years, through early procurement, 
if the seasonal forecast is correct. These values show that the Pro-Active 
farmer could save 16 % of the market value and 19 % of the standard 
output on a 1 ha farm compared to the Reactive farmer. The Pro-Active 
farmer saves >3.8 times more than the Prepared farmer saves. 

In addition, we computed the savings for a various combinations of 
prepared and spontaneous downy mildew sprayings (not shown) to 
determine range of loss/savings due to early procurement of downy 
mildew products and labor. For 1 ha, assuming 100 % seasonal forecast 
accuracy, a Pro-active Farmer could save €175 (for 1 spray and labor) to 
€768 (for 10 sprays and labor) compared to Reactive Farmer in downy 
mildew product costs. In 2016, 10 sprays were needed; it was the 

Table 5 
Cost of inaction against fungal diseases for various holding sizes in terms of market value (Graça, 2021). Values rounded to nearest Euro.   

1 ha 5 ha 10 ha 160 ha 

Avg. Yield (3,200 kg/ha) 3,200 kg 16,0000 kg 32,000 kg 512,000 kg 
Avg. Price for good quality yield (0.98 €/kg) €3,136 €15,680 €31,360 €501,760 
Downy Mildew Loss (30% less yield) €941 €4,704 €9,408 €150,528 
Sunburn Loss (20% less yield) €627 €3,136 €6,272 €100,352 
Powdery Mildew Loss (20% value loss) €627 €3,136 €6,272 €100,352  

Table 6 
Cost of inaction against fungal diseases for various holding sizes in terms of 
Eurostat Standard Output 2013 (Euro/ha) for the Norte region of Portugal 
(EuroStat, 2021).   

1 ha 5 ha 10 ha 160 ha 

Vineyards - quality wine €2,610 €13,050 €26,101 €417,615 
Downy Mildew Loss (30% less yield) €783 €3,915 €7,830 €125,284 
Sunburn Loss (20% less yield) €522 €2,610 €5,220 €83,523 
Powdery Mildew Loss (20% value 

loss) 
€522 €2,610 €5,220 €83,523  

Table 7 
Costs associated with the procurement 4 sprays of downy mildew fungicide, 
typical of an average year, for a 1 ha holding (Graça, 2021). Savings related to 
labor included for Pro-Active farmer. Source: SOGRAPE (Graça, 2021).   

# Sprays 
procured 6 

months ahead 

# Sprays 
procured 2 

weeks ahead 

Total 
Costs 

Savings 
relative to 
Reactive 
Farmer 

Reactive Farmer 0 4 €601.60 - 
Prepared Farmer 2 2 €470.00 €131.60 
Pro-Active 

Farmer 
(Forecast 
accuracy 
100%) 

4 0 €388.40 €373.20  

Table 8 
Costs associated with the procurement of 6 sprays of downy mildew fungicide, 
typical of a ’wet’ year, for a 1 ha holding (Graça, 2021). Savings related to labor 
included for Pro-Active farmer. Source: SOGRAPE (Graça, 2021).   

# Sprays 
procured 6 

months 
ahead 

# Sprays 
procured 2 

weeks ahead 

Total 
Costs 

Savings 
relative to 
Reactive 
Farmer  

Reactive 
Farmer 

0 6 €902.40 -  

Prepared 
Farmer 

2 4 €770.80 €131.60  

Pro-Active 
Farmer 
(Forecast 
accuracy 
100%) 

6 0 €507.60 €504.80   
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maximum number of sprays recorded by SOGRAPE (Graça, 2021). 
While the savings potential from seasonal forecasts are very attrac-

tive, the purpose of Table 9 is to demonstrate the impact of a missed 
forecast of a hotter- and/or wetter-than-normal year and similarly a 
false-alarm forecast. When a forecast is missed, the Pro-Active Farmer 
still saves money relative to the Reactive Farmer. A ’false-alarm’ fore-
casts of a ’wet’ year, however, can lead to a loss for the Pro-Active 
Farmer through wasted protection product and additional labor. The 
False-alarm rate of seasonal forecasts must be accounted for in the price 
of the climate service. 

4.2.3. Proposed Climate Service Fee 
In Table 10 the range of potential savings associated with 1 to 10 

sprays are presented for the Pro-Active Farmer compared to the Reactive 
and Prepared Farmer. This is assuming a seasonal forecast with a 100 % 
accuracy. Additionally, the average potential savings for 3 to 6 sprays is 
presented, which is more realistic. This ’averaged potential savings’ is 
what the grape growers aim to gain by using the seasonal forecast of the 
bioclimatic indicators on the MED-GOLD Dashboard. We used this value 
to help determine a first estimate of an annual climate service access fee; 
which we took to be 10 % of the average potential savings for a seasonal 
forecast with a 100 % accuracy. The choice of 10 % is a very conser-
vative estimate to give us a lower bound of an annual fee. For simplicity, 
this initial dashboard access fee is scaled linearly by 50 %, 70 %, and 90 
% to represent forecast accuracy. This linear relationship can be 
adjusted if future studies collect and analyse data from more farmers 
regarding past financial losses due to fungal infection, as well as the 
financial changes that occur when some farmers incorporate seasonal 
forecasts into their decision making process. 

If using the seasonal forecasts for hotter- and/or wetter-than-normal 
conditions starting in March, where the accuracy is closer to 50 % rather 
than 100 % (see Section 4.1), we propose a Climate Service Fee of €20/ 
year. This minimal fee should not act as a barrier for the adoption of the 
MED-GOLD Dashboard climate service for protection against fungal 
disease by viticulturists. 

While the seasonal forecast accuracy for hotter- and/or wetter-than- 
normal conditions is best in June, in the context of anticipating hiring 
labor and the early procurement of fungicides to reduce infection risk, 
June is too late. 

4.2.4. Maintenance and Sustainability of Climate Service for Viticulture 
With a proposed Climate Service Fee of approximately €20 per year, 

which is a low estimate, we determined whether the potential market 
could sustain the maintenance and sustainability of the MED-GOLD 
Dashboard. Assuming a market uptake of the Douro holding distribu-
tions (Fig. 2), for both 30 % (conservative) and 50 % (realistic, as esti-
mated by SOGRAPE (Graça, 2021)), we show that an annual income of 
€117,789 and €196,330 can be generated (Table 11). 

The calculated annual income far exceeds the expected €12,000/year 
needed to maintain the MED-GOLD dashboard and accounts for the 

increased number of dashboard users. This income could cover the costs 
of continuous monitoring and maintenance of the dashboard’s infra-
structure; including corrective maintenance (i.e.: technical tasks, 
including but not limited to correction to an application’s source code 
needed to repair and correct logical and technical defects discovered 
after the original deployment). 

Moreover, the additional income could also be used, through adap-
tive and preventive maintenance activities, to keep improving the 
Dashboard according to users’ feedback, e.g. by leveraging all eventual 
new CDS products and databases, increasing climate data resolution, 
developing and implementing new relevant indicators, etc. 

5. Conclusions 

The MED-GOLD Horizon 2020 project aimed to demonstrate the 
added value of climate services for traditional agri-food Mediterranean 
systems. For the Wine sector, one of the most relevant questions raised in 
the project was: Where can climate services add value to the decision 
making process of wine companies and farmers when climate informa-
tion is conveniently tailored and presented in a user-friendly manner? 
One of the main outcomes of the project was the MED-GOLD dashboard 
which provides essential climate variables, as well as bioclimatic in-
dicators, in a simple-to-understand and easy-to-use manner. 

The three bioclimatic indicators, SprR, SU35, and WSDI, analyzed in 
this study have been co-developed to provide actionable climate 
knowledge to help mitigate fungal diseases; allowing for early pro-
curement of fungicide products and the hiring of labor for canopy 
management. 

In this climate service oriented paper we developed an approach to 
determine an acceptable annual fee for a micro holding grape growers to 
access the seasonal forecasts of the three bioclimatic indicators on the 
MED-GOLD dashboard. To determine the fee, first, we calculated the 
seasonal forecast hit-rate, false-alarm rate, and accuracy of these three 
indicators over the Douro Valley wine region. Second, we performed a 
cost-benefit analysis identifying the potential savings and losses of a 
micro holding grape grower. 

Table 9 
Costs associated with false-alarm and missed forecasts for labor costs and the procurement of 6 sprays of downy mildew fungicide, typical of a ’wet’ year, for a 1 ha 
holding. Source: SOGRAPE (Graça, 2021).   

# Sprays procured 6 months ahead # Sprays rightarrow be procured or lost Total Costs Savings relative to Reactive Farmer  

Pro-Active Farmer (Forecast 50% miss) 3 3 €705.00 €197.40  
Pro-Active Farmer (Forecast 50% false) 6 -3 €507.60 €− 166.40   

Table 10 
Range of potential savings of the Pro-Active Farmer, compared to the Reactive and Prepared Farmers, for a hotter- and/or wetter-than-normal year, for a 1 ha holding.      

Proposed Fee  

Savings Range 1 to 10 Sprays Avg. Savings 3 to 6 Sprays 10% of Avg. Savings 90% accuracy 70% accuracy 50% accuracy 

Pro-Active Farmer vs. Reactive Farmer €175–768 €406 €40 €36 €28 €20 
Pro-Active Farmer vs. Prepared Farmer €194–636 €275 €28 €24 €19 €15  

Table 11 
Annual income generated based on 30 % and 50 % market uptake of Douro 
holding distributions (Fig. 2) multiplied by an annual climate service fee of €20.   

Market Uptake of Holding Distributions 

Farm Size 30 % Market Uptake 50 % Market Uptake 

⩽1 ha €71,700 €119,500 
>1 to ⩽2 ha €19,332 €32,220 
>2 to ⩽5 ha €16,104 €26,840 
>5 to ⩽10 ha €6,180 €10,300 
>10 to ⩽20 ha €2,880 €4,800 
> 20 ha €1,602 €2,670 
Total Annual Income €117,798 €196,330  
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The results showed SEAS5 seasonal forecasts of the three bioclimatic 
indicators, for hotter- and/or wetter-than-normal conditions, starting in 
March have an accuracy of 54–60 % compared to the ERA5 reanalysis 
over the Douro region. These forecast accuracies were better than 
assuming the upcoming season will be similar to the climatic average (a. 
k.a. ”normal”). As such, we can see that this climate service adds value to 
the traditional agri-food system. Micro holding farmers over can benefit 
from the actionable climate knowledge as a result of the SEAS5 
accuracy. 

Of the three indicators, despite having a lower hit-rate, the overall 
seasonal forecasts of SprR performed better than SU35 and WSDI 
because it had lower false-alarm rates. The most accurate forecasts are 
those starting in June, however, correct as they may be, they bring little 
value to procure better pricing in products or labor. 

The results of the cost-benefit analysis showed that the cost of 
inaction due to fungal diseases and sunburn ranges from €627–941/ha 
using the Market Value approach and €522–783/ha using the European 
Commission Standard Output approach. When the seasonal forecasts of 
the bioclimatic indicators are included in the decision making process, 
they can save a farmer more than 10 % of the annual income from a 
harvest for an average year. Similarly, more than 15 % of the annual 
income from a harvest can be saved in a hotter- and/or wetter-than- 
normal year. These values represent what could be saved when the 
seasonal forecast accuracy is 100 %, however, potential losses due to 
false-alarms (24 %-44 % in March) must be accounted for. 

After taking into consideration the financial loss due to fungal dis-
eases and sunburn (Section 4.2.1), the maximum potential savings of a 
seasonal forecast in terms of early procurement of labor and fungicide 
(Section 4.2.2), and the accuracy of the seasonal forecast starting in 
March (Section 4.1) over the Douro region, which is closer to 50 % 
rather than 100 %, we propose a Climate Service Fee of €20/year. 

Based on this analysis, a climate service that correctly forecasts the 
infections risk:  

• 90 % of the time should cost €24–36.  
• 70 % of the time should cost €19–28.  
• 50 % of the time should cost €15–20. 

The approach used to determine the proposed climate service fee can 
be adjusted as performance of the seasonal forecast improves, in terms of 
hit-rate, false-alarm rates, and overall accuracy. As the seasonal forecast 
accuracy improves, so does its value to grape growers. The value to 
grape growers can increase with further developments or iterations of 
the MED-GOLD Dashboard. Best practices for climate service may 
include providing performance metrics (such as hit-rate, false-alarm 
rate, and accuracy) alongside their products in a transparent manner to 
instill a user’s confidence. 

The methodology presented in this paper can be extended to the 
valuation of other MED-GOLD Dashboard indicators (e.g. sanitary risk), 
regions (e.g. Italy), and time periods (e.g. climate projections). Elements 
of the methodology which can be generalized for the purpose of deter-
mining a user fee include: (i) evaluating the performance of a prediction; 
(ii) evaluating the financial impact and potential savings of a decision 
based on different forecast accuracies; (iii) linking the fee to the per-
formance of the service; and (iv) transparent discussions regarding costs 
from the perspective of both the application user and software developer 
regarding maintenance. As such, a similar valuation can be performed 
for other MED-GOLD products created for the Olive and Durum Wheat 
industries. The annual income generated by the access fee for the sea-
sonal forecast described in this paper would be only one contribution to 
the total income generated to maintain the MED-GOLD Dashboard. 

Lastly, given the proposed fee, the distribution of holdings, and 
assumed Market Uptake of farmers of the Douro wine region, we showed 
the annual income generated can easily cover the maintenance of the 
MED-GOLD Dashboard. This allows surplus revenue to be used for 
improving the Dashboard according to users’ feedback, as well as 

developing and implementing new relevant indicators, and leveraging 
new CDS products and databases. 
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Matamoros, R., Chou, C., Terrado, M., Giannakopoulos, C., Varotsos, K., Caboni, F., 
Locci, R., Nanu, M., Porru, S., Argiolas, G., Bruno Soares, M., Sanderson, C., 2023. 
Monitoring climate related risk and opportunities for the wine sector: The MED- 
GOLD pilot service. Climate Services 30. https://doi.org/10.1016/j. 
cliser.2023.100346. 
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2023. Advanced seasonal predictions for vine management based on bioclimatic 
indicators tailored to the wine sector. Climate Services 30. https://doi.org/10.1016/ 
j.cliser.2023.100343. 

Martins, J., Fraga, H., Fonseca, A., Santos, J.A., 2021. Climate projections for 
precipitation and temperature indicators in the Douro wine region: The importance 
of bias correction. Agronomy 11 (5), 990. https://doi.org/10.3390/ 
agronomy11050990. 

Dunn, R.J.H., Alexander, L.V., Donat, M.G., Zhang, X., Bador, M., Herold, N., et al., 2020. 
Development of an updated global land in situ-based data set of temperature and 
precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres 125. 
https://doi.org/10.1029/2019JD032263 e2019JD032263.  

Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Q.J.R. 
Meteorol Soc. 146, 1999–2049. https://doi.org/10.1002/qj.3803. 

Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., et al., 2021. 
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